

P-ISSN: 2827-9832 E-ISSN: 2828-335x

Anti-Elastase Potential in Vitro of Koro Komak (Lablab Purpureus) **Extract as Anti-Aging Protection**

Naila Zanubah Arifah*, Dina Helianti, Erfan Efendi

Universitas Jember, Indonesia Email: nailazanuba@gmail.com*

ABSTRACT

The aging process leads to skin changes such as wrinkles and loss of elasticity, often accelerated by premature aging caused by factors like UV radiation and reactive oxygen species (ROS). Elastase, an enzyme responsible for degrading *elastin* in the skin's extracellular matrix, plays a critical role in this process. This study aimed to investigate the anti-elastase potential of koro komak (Lablab purpureus) extract, a plant rich in polyphenolic compounds, through in vitro testing. A quasi-experimental design was employed, using different concentrations of the extract compared to ascorbic acid as a positive control. Phytochemical screening confirmed the presence of flavonoids, phenols, and tannins. The extract exhibited moderate anti-elastase activity with an ICso value of 128 µg/mL, and at 200 µg/mL concentration, it inhibited elastase enzyme activity by 65.90%. These findings suggest that koro komak extract has promising potential as a natural anti-aging agent by protecting skin elasticity through *elastase* inhibition.

Keywords: premature skin aging, elastase inhibition, koro komak extract

This article is licensed under CC BY-SA 4.0

INTRODUCTION

The aging process is a dynamic phenomenon that represents one of the main skin concerns for everyone. This process leads to various skin changes such as wrinkles, pigmentation, dryness, dullness, and roughness (Atmaja et al., 2012; Sundaram et al., 2018). Aging can occur prematurely or at a rate inconsistent with one's biological age, a condition referred to as premature skin aging (Ahmad et al., 2018). Premature aging is characterized by a decline in skin elasticity caused by the degradation of elastin by the enzyme elastase in the extracellular matrix (Natanael et al., 2021).

Elastase is a type of serine protease enzyme that can damage all components of the extracellular matrix in the skin's connective tissue, including collagen, fibronectin, and elastin. In the skin, elastase is secreted by neutrophils and is influenced by both intrinsic and extrinsic factors that can increase the production of reactive oxygen species (ROS) (Ahmad et al., 2018). Intrinsic factors include genetic predisposition, hormonal changes, and enzymatic processes within the body, while extrinsic factors include UV radiation exposure, air pollution, cosmetic use, and cigarette smoke. UV radiation and ROS can lead to excessive elastase activation, resulting in increased hydrolysis of the skin's connective tissue matrix proteins, particularly *elastin*. This activity leads to the loss of skin elasticity and accelerates the visible signs of premature aging (Chiocchio et al., 2018).

Premature aging caused by UV radiation is known as photoaging. The prevalence of photoaging has increased over the past few decades. A study conducted in Australia by Green reported that 72% of men and 42% of women under the age of 30 showed signs of photoaging. Individuals living in geographic areas with frequent sun exposure are at higher risk of UVB

radiation exposure, making them more susceptible to premature aging (Ahmad et al., 2018). Therefore, efforts are necessary to prevent and address premature aging, including the use of natural compounds that act as anti-elastase agents (Wilkerson, 2018).

Inhibiting *elastase* activity can protect *elastin* from degradation due to UV radiation and ROS, thereby preventing damage to the extracellular matrix (Desmiaty et al., 2020). The use of anti-*elastase* agents helps prevent the loss of skin elasticity (Ambarwati et al., 2019).

Many natural ingredients possess anti-elastase activity and are commonly used in antiaging products. Most of these natural ingredients are rich in antioxidant compounds such as polyphenols, particularly flavonoids, phenols, and tannins. Polyphenols are secondary metabolites of various plant species, and research has shown that they exhibit antioxidant, anti-hyaluronidase, anti-collagenase, anti-tyrosinase, and anti-elastase activities, making them highly effective in slowing the process of premature aging (Natanael et al., 2020).

Koro komak (Lablab purpureus) is a low-cost, adaptable plant widely consumed in East Java. However, it remains underutilized and relatively unknown due to its seasonal growth (Diniyah et al., 2020; Kurnianingsih et al., 2021). Koro komak contains bioactive secondary metabolites such as saponins, flavonoids, steroids, alkaloids, coumarins, carbohydrates, terpenoids, tannins, oxalates, phytates, cyanogenic glycosides, and free phenolics in its crude extract (Adebis, 2017). Studies have shown that ethanol extracts of koro komak possess antihyperglycemic and antihypercholesterolemic effects hypercholesterolemic diabetic hamsters. Additionally, it can protect cells from UV radiation through its strong antioxidant activity. However, to date, no research has investigated the potential of polyphenols in koro komak as anti-elastase agents (Wardani et al., 2015; Diniyah et al., 2020).

Based on the above explanation, it is necessary to conduct research on the anti-elastase potential of koro komak extract through in vitro testing for its anti-aging properties. The use of extracts in this study aims to maximize the isolation of the active polyphenol compounds in koro komak. The researchers hope that koro komak can become a promising alternative for the prevention and development of therapies for premature skin aging.

METHOD

This research was a quasi-experimental study using a post-test only non-equivalent control group design to analyze the potential of *koro komak* (*Lablab purpureus*) powder extract as an anti-aging agent through the measurement of elastase enzyme inhibition activity. The study was conducted using an experimental method with sample groups consisting of *koro komak* (*Lablab purpureus*) extract at varying concentrations and a positive control in the form of ascorbic acid. The research stages included equipment sterilization, preparation of *koro komak* (*Lablab purpureus*) extract, test sample preparation, control preparation, phytochemical testing, and elastase enzyme inhibition testing.

RESULTS AND DISCUSSION

In this study, 100 grams of koro komak were used to become 12.76 grams of dried extract. The yield value of 70% ethanol coarse extract of koro komak seeds in this study was 12.8%. The manufacture of koro komak extract is carried out by taking 2000 μ g of dried extract and dissolving it into 2% DMSO. The preparation is diluted with the same solvent into

concentrations of 200, 100, 50, 25, and 12.5 μ g/mL. Furthermore, there is a positive control as a comparison, namely ascorbic acid. Ascorbic acid is weighed and dissolved until a solution with a concentration of 500 μ g/mL is obtained, then ascorbic acid is diluted to concentrations of 200, 100, 50, 25, and 12.5 μ g/mL

Phytochemical Screening Test of Koro Komak Extract

FeC13

gelatin solution

12,5

In this study, the identification of secondary compounds contained in the sample was carried out using a phytochemical screening test of the tubular method based on Gopinath (2021). Koro komak extract shows positive results on flavonoids, phenols, and tannins. The results of the phytochemical screening of koro komak extract are presented in Table 1.

	1 0	0		
	Discoloration			
Active compounds	Reagents	Back	End	Result
Flavonoids	H2SO4	Clear yellow	Orange	+

Clear yellow

Clear yellow

13,87%

Black

White deposits

+

Table 1. Results of phytochemical screening test of koro komak extract

Results Anti-elastane Activity

Phenol

Tannins

The results of inhibition *of anti-elastase* enzymes from each extract showed higher activity as concentration increased. The activity of *the anti-elastase enzyme* of koro komak extract (EKK) can be seen in Table 2 and Figure 1.

 EKK Concentration
 Inhibition of the enzyme elastase

 (μg/mL)
 (%)

 200
 65,90%

 100
 50,40%

 50
 28,33%

 25
 16,72%

Table 2. Percentage of anti-elastase activity of koro komak extract

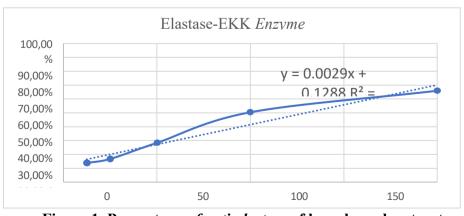


Figure 1. Percentage of anti-elastase of koro komak extract

The results showed that the highest *anti-elastase activity* of koro komak extract was at a concentration of 200 μ g/mL with an inhibition percentage of 65.90% and the lowest activity was at a concentration of 12.5 μ g/mL with an inhibition percentage of 13.87%. The results were then compared with the positive control, namely ascorbic acid (AA) which can be seen in Table 3 and Figure 2.

Table 3. Percentage of anti-elastase activity of ascorbic acid

AA concentration (μg/mL)	Inhibition of the enzyme elastase (%)
200	90,79%
100	73,43%
50	39,86%
25	23,25%
12,5	15,55%

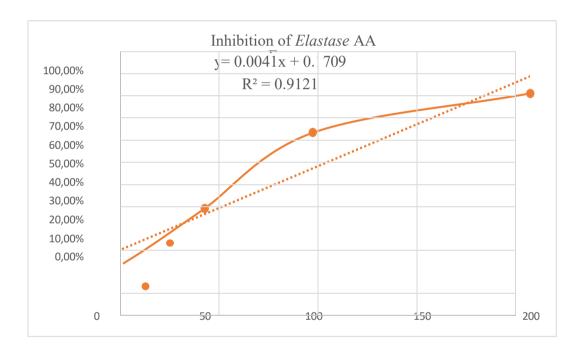


Figure 2. Percentage of anti-elastase activity of ascorbic acid

Ascorbic acid showed the highest *anti-elastase* activity at a concentration of 200 μ g/mL with a percentage of 90.79% and the lowest activity was at a concentration of 12.5 μ g/mL with a percentage of 15.55% shown in Table 3 and Figure 2.

Data Analys

After knowing the inhibition activity of *elastase enzymes* from koro komak extract and ascorbic acid, the next step is data analysis. The method used to analyze the sample data in this study is to use the IC50 value obtained from linear regression analysis. IC Value it is a concentration that can inhibit 50% of *the activity of anti-elastase* enzymes and has properties that are inversely proportional to the inhibition percentage of an enzyme. The smaller the IC50 value, the higher the *anti-elastane* activity (Sawant and Varsha, 2017). The IC50 value of koro

komak (EKK) and ascorbic acid (AA) extracts in this study was obtained from the results of linear regression analysis as shown in Table 4 and Figure 3 below.

Table 4. Linear regression equation and IC50 values of anti-elastase activity

Sample	Equation	R2	IC50 (µg/mL)
EKK	y = 0.0029x + 0.1288	0,9425	128
AA	y = 0.0041x + 0.1709	0,9121	80

Figure 3. Comparison of the results of *anti-elastase regression* analysis of koro komak (EKK) extract and ascorbic acid (AA).

The reaction between *the elastase enzyme* and the SANA substrate is characterized by the formation of a yellow color that can be measured with a spectrophotometer. The higher the ability of a sample to inhibit *the elasticase* enzyme, the fewer reactions that occur and the clearer the color that forms (Juliana, 2020). The results of *the anti-elastase* activity test are categorized according to the IC50 value shown in Table 5.

Table 5. Categories of activity test results *Anti-Elastase* by IC50

· ·	· · ·
Category	IC50 (μg/mL)
Very powerful	<50
Strong	50-100
Quite powerful	101-150
Weak	150-200

(Source: Sukandar et al., 2017)

The yield value of 70% ethanol extract of koro komak in this study was quite high, namely 12.76% compared to the yield of koro kratok extract (Phaseoulus lunatus L) of 10.6% (Nafi et al., 2007). This is because the high drying rate in koro komak flour is caused by the amount of free water in koro kratok which is used for the sprout growth process and then free

water releases in the ovening process. The nature of free water in food is volatile in the drying process (Winarno, 2004). In addition, the protein content in koro komak is higher than in koro kratok. This is supported by the research of Liadi et al. (2019) which showed the result of koro komak protein content of 41.39±1.1 and koro kratok of 10.06±0.6.

The variation in concentration of the prepared koro komak extract samples has gone through phytochemical screening tests and anti-elasticase activity tests. Phytochemical screening tests were carried out qualitatively to determine the presence of secondary compounds from koro komak extract samples before conducting anti-elasticase activity tests. The anti-elastase activity test aims to see the effect of compounds inside koro extract the inhibition of the elastase enzyme was then compared with ascorbic acid and analyzed using linear regression.

Phytochemical Screening Test

Based on Table 1, it is known that through phytochemical screening, koro komak extract is proven to have flavonoid compounds, phenolics, and tannins. A positive result of flavonoids is characterized by a change in color. This change is due to the addition of H2SO4 which aims to reduce the benzopiron core in the flavonoid structure so that flavylium salts are formed which is shown by the change in clear yellow color to orange or orange (Ergina, 2014). The results of phenolic screening on koro komak extract were characterized by a change in clear yellow color towards dark blue to black. The phenolic screening test was qualitatively performed by mixing samples and 5% FeCl3. The reaction of FeCl3 with hydroxyl groups bound to unsaturated carbon in the phenol structure will form a deep green, red, purple, blue, or black color (Harborne, 1987).

The tannin screening test of koro komak extract was shown by the formation of white deposits. The deposits are formed due to the mixing of samples and gelatin solutions. If an extract contains tannin compounds, then the gelatin solution will react with tannins to form protein deposits on gelatin (Harborne, 1987).

Based on phytochemical test screening, koro komak extract (Lablab purpureus) is proven to have polyphenol antioxidant compounds in the form of flavonoids, phenolics, and tannins. This is shown from the positive results in all three phytochemical screening tests. The test proved that koro komak extract has the potential to have anti-elastase properties. The results of this study are supported by previous research that legumes, one of which is koro komak, are rich in phenolics and flavonoids such as gallic acid, chlorogenic acid, p-coumaric acid, myricetin, vanillic acid, quercetin glycosides, genistein, kaempferol, luteolin, daidzein, and tannins (Diniyah et al., 2020). Nuts show the value of absorption capacity high oxygen radicals (ORAC) (66.97 umol TE/g) due to the significant amount of polyphenol compounds, especially flavonoids, present in the seed shell (Aguilera et al., 2010). This finding is in accordance with Diniyah's (2020) research that extracts from koro komak seeds have polyphenols in the form of galleic acid (2.245%), catechins (0.058%), and epicatechin (0.040%) which were tested using high-performance liquid chromatography (HPLC) tests.

Research by Diniyah (2021) showed that the total polyphenol component of ethanol extract was 70% koro komak through quantitative screening, namely 2.245% galic acid, 0.058% catechins, and 0.040% epicatechins. Meanwhile, in the research conducted by Sadh et al. (2017) found that the total polyphenol component of galic acid in ethanol extract was 54%

koro komak $46.78 \pm 0.17~\mu M~GAE/g$. Research by Lohvina et al. (2021) showed that the polyphenol component in paddy rice plants (Limnophila aromatic) was only $6.25~\mu M~GAE/g$. This shows that the polyphenol component in koro komak extract is quite high.

Anti-Elastase Activity

The skin is a part of the human body that plays an important role as a protective barrier for organs from physical, chemical, and biological disorders. The activity of ROS (reactive oxygen species) and the enzyme elastase are known to be factors that can accelerate skin aging (Wilkerson, 2018). The accumulation of ROS after exposure to UV radiation on the skin can activate dermal enzymes, such as collagenase and elastase, which hydrolyze collagen and elastin thereby lowering skin elasticity (Jiratchayamaethasakul et al., 2020). In this study, the inhibition activity of elastase enzyme in koro komak extract samples was tested through spectrophotometry. Based on Table 4.2, it is known that koro komak extract samples are proven to inhibit the enzyme elastase.

The results showed that koro komak extract (Lablab purpureus) had a strong antielastase activity (128 $\mu g/mL$; IC50 101- 150 $\mu g/mL$). Through these results, it can be stated that koro komak extract has the potential to be an anti-elastase but has a lower IC50 value than ascorbic acid (80 $\mu g/mL$). This can be due to the presence of secondary metabolites that are strong specific inhibitors of the elastase-enzyme (Natanael et al., 2021). The IC50 value of elastase-enzyme inhibition of koro komak extract was shown to be higher than the IC50 value of elastase-enzyme inhibition of green algae (Chlorella emersonii) and Pueraria candollei (49000 $\mu g/mL$ and 143 $\mu g/mL$) due to the higher polyphenol and antioxidant content of koro komak (Desai and Varsha, 2017 and Chattuwatthana, 2014).

The results of the data analysis showed that for every 1% increase in anti-elastase activity, a concentration of 0.0029 μ g/mL was required. The results of the regression correlation value are positive so that it can be said that the anti-elastase activity is directly proportional to the increase in the concentration of koro komak extract. The positive correlation is also shown by the control solution, namely ascorbic acid as per Figure 3.

Based on Table 2, the results of the study prove that koro komak extract has the activity of inhibiting the elasticase enzyme. This is because specific compounds in koro komak extract in the form of polyphenols can inhibit the elastase-enzyme directly or through ROS inhibition. Previous research reported that polyphenols and flavonoids have antioxidant, antihyaluronidase, anti-collagenase, anti-tyrosinese, and anti-elastasian activity (Natanael et al., 2020). This is proven by Diniyah et al., (2020) that koro komak extract with 70% ethanol has more polyphenols and flavonoids so that it can inhibit free radicals more strongly compared to koro komak extract with water or 100% ethanol.

The results in Table 2 also show that the highest anti-elastase activity in koro komak extract was at a concentration of 200 μ g/mL with an inhibition percentage of 65.90% and the lowest activity was at a concentration of 12.5 μ g/mL with an inhibition percentage of 13.87%. This shows that in this study, koro komak extract with a concentration of 200 μ g/mL has the highest elastase-inhibition activity compared to the concentration variation below it, but no peak effect has been found. Peak effect is concentration highest to achieve maximum effect (Lipicky, 1994). This study needs to identify peak effects so that we can determine the peak concentration to achieve maximum inhibition of elastase enzymes.

The gradient shown in Figure 1 is of positive value so it can be said that the anti-elastase activity is directly proportional to the increase in the concentration of koro komak extract. This is because polyphenol compounds as elastase inhibitors concentrated in koro komak extract compete directly with the SANA substrate to occupy the active side of the elastase enzyme. This is supported by Vijayakumar's (2017) research that polyphenol compounds carry hydroxyl groups that can react with the elastane enzyme and then form bonds with carboxyl groups on the active side of the elastase-enzyme and change the mechanism of action of the enzyme. As a result, the enzyme elastase becomes inactive and is unable to hydrolyze peptide bonds on elastin. Therefore, the higher the concentration of koro komak extract, the higher the inhibition activity of the elastase enzyme. The results of the study support the hypothesis that koro komak extract (Lablab purpureus) as an anti-aging has anti-elastic potential.

Ascorbic acid was used as a positive control in this study. Based on Table 4 and Table 5, the inhibition activity of elastase enzyme in koro komak extract has a lower value than ascorbic acid. The concentration required by koro komak extract to inhibit the elastane enzyme is higher than the concentration required by ascorbic acid. This shows that the inhibition activity of the elastase-enzyme of koro komak extract is not good enough when compared to ascorbic acid. Ascorbic acid was used as a positive control because ascorbic acid could be a gauge in anti-elastase effectiveness in this study. Ascorbic acid is one of the most potent antioxidants in plants and has been shown to have strong anti-elastase activity as a single molecule compared to other plant extracts that contain various bioactive compounds (Abdelgawad et al., 2019). Previous studies have reported that ascorbic acid has anti-elastase activity with an extraordinarily strong IC50 value (9.47 □ 0.18 μg/mL) (Vijayakumar et al., 2017). Ascorbic acid inhibits most ROS due to the oxidation of ascorbic into monodehydroascorbate then to dehydroascorbate and has various functions, such as the maintenance of physiological states in human skin (Shirzad et al., 2018).

CONCLUSION

The study concluded that *koro komak* (*Lablab purpureus*) extract contains polyphenolic compounds such as flavonoids, phenols, and tannins, confirmed through phytochemical screening. The extract demonstrated moderate anti-elastase activity with an IC₅₀ value of 128 µg/mL, indicating its potential as an anti-elastase agent in vitro. At a concentration of 200 µg/mL, the extract inhibited elastase enzyme activity by 65.90%, showing its most effective anti-elastase potential. Future research is recommended to explore the extract's anti-elastase effects in vivo, assess its safety and efficacy in clinical settings, and isolate specific active compounds responsible for the activity to optimize its development as a natural anti-aging agent.

REFERENCES

A.L, M. (2010). Junqueira's Basic Histology Text & Atlas. New York: McGraw Hill Medical.
 Abdelgawad, K. F., M. El-Mogy, M.I.A. Mohamed, C. Garchery, dan R.G. Stevens. (2019).
 Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Gene. Agronomy, 9(2), 51.

Adebis, O. S. dan K.O. Lawal. (2017). The Impact of Service Quality on Customer Loyalty: A Study of. Arabian Journal of Business and Management Review, 4(2), 1–5.

- Ahmad, Z. dan Damayanti. (2018). Penuaan Kulit: Patofisiologi dan Manifestasi Klinis (Skin Aging: Pathophysilogy and Clinical Manifestation). Surabaya: Berkala Ilmu Kesehatan Kulit dan Kelamin Perodical of Dermatology and Venerology Vol.30 (3). (2018). 30, 2018.
- Al-snafi, A. E. (2017). The pharmacology and medical importance of Dolichos lablab (Lablab The pharmacology and medical importance of Dolichos lablab (Lablab purpureus) A review Prof Dr Ali Esmail Al-Snaf. IOSR Journal of Pharmacy (IOSRPHR), 7(2), 22–30.
- Ambarwati, N. S. S., Elya, B., & Desmiaty, Y. (2019). Anti-elastase activity of methanolic and ethyl acetate extract from Garcinia latissima Miq. Journal of Physics: Conference Series, 1402(5).
- Anggraini, N. B., B. Elya dan Iskandarsyah. (2020). Anti-elastase, antioxidant, total phenolic and total flavonoid content of macassar kernels (Rhus javanica L) from pananjung pangandaran nature tourism park- Indonesia. Journal of Natural Remedies, 20(1), 61–67. https://doi.org/10.18311/jnr/2020/24240
- Ara, J., M.R. Hossain, M. A. A. Nizami, dan A. S. M Sayem. (2020). Evaluation of Sedative and Anxiolytic Activity of Methanolic Extract of Lablab Evaluation of Sedative and Anxiolytic Activity of Methanolic Extract of Lablab purpureus (L.) Sweet Seeds in Experimental Mice Model. European Journal of Medicinal Plants, 31(1).
- Atmaja, N. S., Marwiyah, dan E. Setyowati. (2012). Pengaruh Kosmetika Anti Aging Wajah Terhadap Hasil Perawatan Kulit Wajah. Journal of Beauty Health Education, 1(1).
- Azkiyah, R., A. Soegianti, dan Kuswanto. (2018). Observasi Tanaman Kacang Komak (Lablab purpureus L. sweet) di Kabupaten Probolinggo, Jawa Timur. Jurnal Produksi Tanaman, 6(9), 2363–2371.
- Cevallos, A. M., J. Herrera, I. López-Villaseñor, dan R. Hernández. (2017). Differential Effects of Two Widely Used Solvents, DMSO and Ethanol, on the Growth and Recovery of Trypanosoma cruzi Epimastigotes in Culture. The Korean Journal of Parasitology, 55(1), 81–84.
- Chiocchio, I., M. Mandrone, C. Sanna, A. Maxia, M. Tacchini, dan F. Poli. (2018). Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Industrial Crops and Products, 122, 498–505.
- Chu, D. H. (2012). Development and Structural of Skin. New York: McGraw Hil. Dahlan. (2010). Besar Sampel dan Cara Pengambilan Sampel. Jakarta: Salemba Medika.
- Dash, P. (2016). Phytochemical Screening and Pharmaclogical Investigations. Anchor Academic Publishing.
- Desmiaty, Y., F. C. Saputri, M. Hanafi, R. Prastiwi, dan B. Elya. (2020). Anti- Elastase, Anti-Tyrosinase, And Anti-oxidant of Rubus Fraxinifolius Stem Methanolic Extract. Pharmacognosy Journal, 12(2).
- Diniyah, N. dan S. H. Lee. (2020). Komposisi Senyawa Fenol dan Potensi Antioksidan Dari Kacang Kacangan: Review. Jurnal Agroteknologi, 14(1).
- Diniyah, N., M. A. Badrul, C. Hee-jeong, dan L. Sang-han. "Lablab Purpureus Protects HaCaT Cells from Nrf2-Mediated Heme Oxygenase-1 Expression via The Activation of P38 ERK1/2." International Journal of Molecular Sciences 21 (2020).

- Direktorat Budidaya Aneka Kacang dan Umb. (2013). Bahan Sosialisasi Pengembangan Budidaya Kacang Lain Direktorat Budidaya Aneka Kacang Dan Umbi 2013 i. Bogor: Kementrian Pertanian.
- Ekasari, D. P. (2018). Intisari Ilmu Kesehatan Kulit dan Kelamin. Malang: UB Press.
- Ergina, Nuryanti, S., & Pursitasari, I. D. (2014). Uji Kualitatif Senyawa Metabolit Sekunder pada Daun Palado yang Diekstrasi dengan Pelarut Air dan Etanol. Jurnal Akademika Kimia, 3(3), 165–172.
- Evelyna, A., L. Amelia, T. Wulan, J. A. Lugito, dan C. Theodora. (2020). Uji Aktivitas Antibakteri dan Antifungi Kitosan dengan Pelarut Asam Askorbat. Jurnal Material Kedokteran Gigi, 9(2), 69–74.
- Faiqoh, M., S. Putri, M. Lailiah, dan Y. Pertiwi. (2019). Formulasi Dan Uji Sifat Fisik Stick Balm Nanokarotenoid Daun Mangrove Sebagai Anti-Aging. Journal Ilmiah Kefarmasian, 1(1).
- G.M.d.Prazeres, K., I. H. P. Andrade, G. P. Camilloto, & R. S.Cruz. (2020). Physicochemical and functional properties of mangalô bean (Lablab purpureus L.) starch. Colloids and Surfaces A.
- Girsang, E. dan Lister. (2019). Chemical Constituents of Snake Fruit (Salacca Zalacca (Gaert.) Voss) Peel and In Silico Anti-Aging Analysis. Molecular and Cellular Biomedical Sciences, 8(2), 122.
- Gopinath, D. (2021). Preliminary Studies on Glycine Max Ethanol Extract (GMEE). Asian Journal of Applied Science and Technology (AJAST), 5(3), 156–161.
- Haerani, A., A. Y. Chaerunisa, dan A. Subarnas. (2018). Artikel Tinjaun: Antioksidan Untuk Kulit. Farmaka, 16(2).
- Hartoyo, A., D. Muchtadi, dan M. Astawan. (2011). Pengaruh Ekstrak Protein Kacang Komak (Lablab Purpureus (L.) Sweet)Pada Kadar Glukosa Dan Profil Lipida Serum Tikus Diabetes. Jurnal Teknol Dan Industri Pangan, 22(1).
- Jakimiuk, K., J. Gesek, A. G. Atanasov, dan M. Tomczyk. (2021). Flavonoids as inhibitors of human neutrophil elastase. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1016–1028.
- Jayanti, E. T. (2017). Profil anatomi batang kacang komak (Lablab purpureus (L.) Sweet) lokal Pulau Lombok. Biologi, 10(2), 151–164.
- Jayanti, E. T. (2013). Variasi morfologis dan genetik kacang komak (Lablab purpureus (L.) sweet) di Lombok, Nusa Tenggara Barat. Universitas Gadjah Mada.
- Jiratchayamaethasakul, C., Y. Ding, O. Hwang, S. Im, Y. Jang, S. Myung, dan S. Lee. (2020). In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fisheries and Aquatic Science, 8, 1–9.
- Juliana, C., Lister, I. N. E., Girsang, E., Nasution, A. N., & Widowati, W. (2020). Antioxidant and Elastase Inhibitor from Black Soybean (Glycine max L.) and Its Compound (Daidzein). Journal of Biomedicine and Translational Research, 6(1), 11–14.
- Kalyana Sundaram, I., D. D. Sarangi, V. Sundararajan, S. George, dan S. Sheik Mohideen. (2018). Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging. BMC Complementary and Alternative Medicine, 18(1), 33.

- Kurnianingsih, Rina, S. Kurniasih, dan I. J. Nur. "Diversifikasi Pengolahan Kacang Lokal Lombok Menjadi Pangan Fungsional Di Desa Ubung Lombok Tengah." Jurnal Pengabdian Magister Pendidikan IPA 4, no. 4 (2021): 285–289.
- Maesaroh, K., D. Kurnia, dan J. A. Anshori, (2018). Perbandingan Metode Uji Aktivitas Antioksidan DPPH, FRAP dan FIC Terhadap Asam Askorbat, Asam Galat dan Kuersetin. Chimica et Natura Acta, 6(2).
- Muhith, A., & P. Siyoto. (2016). Pendidikan Keperawatan Gerontik. Yogakarta: Andi.
- Nafi, A., W. S. Windrati, A. Pamungkas, dan A. Subagio. (2013). Tepung Kaya Protein Dari Koro Komak Sebagai Bahan Pangan Fungsional Berindeks Glisemik Rendah. Jurnal Teknol Dan Industri Pangan, 24(1).
- Natanael, G. I., G. F. Simorangkir, N. P Purba, M. P Tambunan, A. Amansyah, dan
- A. N. Nasution. (2021). Potensi Antioksidan dan Anti-Elastase Ekstrak Daun Kelor (Moringa Oleifera) Terhadap Antiaging. Jurnal Keperawatan Priority, 4(1).
- Ndlovu, G. (2013). Financial Sector Development and Economic Growth: Evidence From Zimbabwe. International Journal of Economic and Financial Issues, 3(2), 435–446.
- Nur, S., R. Rumiyati, dan E. Lukitaningsih. (2017). Skrining Aktivitas Antioksidan, Antiaging Dan Penghambatan Tyriosinase Dari Ekstrak Etanolik Dan Etil Asetat Daging Buah Dan Kulit Buah Langsat (Lansium domesticum Corr) Secara In Vitro. Traditional Medicine Journal, 22(1), 63–72.
- Nurhasanah, S., M. G. Rumperiai, R. Z. P. Angin, Arasti, D. Rianinsih, G. Palupi, dan E. Purwanti. (2020). Dolichos lablab (Anatomi, Fisiologi, dan Etnobotani). Universitas Muhammadiyah Malang.
- Palupi, N. E., Rohimah, dan Lestari. (2011). Protein Fungsional Pada Kacang Komak Terhadap Sistem Bahan Pangan. Prosiding Seminar Nasional Akselerasi Pemanfaatan Teknologi Pertanian.
- Parwata, I. M. (2016). Antioksidan. Universitas Udayana.
- Pestotnik, K. (2011). Use of Extracts from Squirting Cucumber (Ecballium elaterium) Seeds in Health. In Nuts and Seeds in Health and Disease Prevention. Academic Press.
- Pientaweeratch, S., V. Panapisal, dan A. Tansirikongkol. (2016). Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical Biology, 54(9), 1865–1872.
- Pientaweeratch, S., V. Panapisal, dan A. Tansirikongkol. (2016). Activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical, 54(9).
- Prayoga, G. (2013). Fraksinasi , Uji Aktifitas Antioksidan Dengan Metode DPPH Dan Identifikasi Golongan Senyawa Kimia Dari Ekstrak Teraktif Daun Sambang Darah (Excoecaria cochinchinensis Lour). Universitas Indonesia.
- Prazeres, K. G. M. d., Andrade, I. H. P., Camilloto, G. P., & Cruz, R. S. (2021). Physicochemical and functional properties of mangalô bean (Lablab purpureus L.) starch. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610(October 2020), 125706.

- Purwanti, E., W. Prianta, dan T. Permana. (2019). Karakterisasi Kandungan Protein Berbagai Aksesi Koro Lokal Sebagai Upaya Penggalian Sumber Pangan Fungsional. Proceeding Biology Education Conference, 16(1).
- Purwitasari, A., Y. Hendrawan, dan R. Yulianingsih. (2014). Pengaruh Suhu dan Waktu Ekstraksi Terhadap Sifat Fisik Kimia dalam Pembuatan Konsentrat Protein Kacang Komak. Jurnal Bioproses Komoditas Tropis, 2(1), 42–53.
- Puspitasari, D. E., M. Amin, dan B. Lukiati. (2016). Analisis Protein Target Senyawa Alami Anti Aging Flavan-3-Ol Dari Theobroma Cacao L. Seminar Nasional Pendidikan Dan Saintek.
- Rahmadiani, N. F. dan A. N. Hasanah. (2019). Formulasi dan Evaluasi Sediaan Anti Aging dari Ekstrak Tumbuhan. Majalah Farmasetika, 4(4).
- Ridho, E. (2014). Uji Aktivitas Antioksidan Ekstrak Metanol Buah Lakum (Cayratia Trifolia) dengan Metode DPPH (2,2-Difenil-1-Pikrilhidrazil). Jurnal Mahasiswa Kedokteran UNTAN.
- Rivero-Cruz, J. F., J. Granados-Pineda, J. Pedraza-Chaverri, J. M. Pérez-Rojas, A. Kumar-Passari, G. Diaz-Ruiz, dan B. E. Rivero-Cruz. (2020). Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants, 9(1), 70.
- Santoso, S. (2018). Mahir Statistik Multivariat dengan SPSS. Elex Media Komputindo.
- Sari, W. P., K. N. Berawi, dan Karima, N. (2019). Managemen Topikal Anti-Aging pada Kulit. Medula, 9(1).
- Sawant, S. S., & Mane, V. K. (2017). Correlating the Anti Aging Activity with the Bioactive Profile of Chlorella emersonii KJ725233; Its Toxicological Studies for a Potential use in Cosmeceuticals. Pharmacognosy Communications, 7(4), 152–157.
- Shirzad, M., J. Hamedi, E. Motevaseli, dan M. Hossein. (2018). Anti-elastase and anticollagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artificial Cells, Nanomedicine, and Biotechnology, 1–11.
- Shrzad, M., J. Hamedi, E. Motevaseli, dan A. Modaresi. (2018). Anti-elastase and anticollagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artificial Cells, Nanomedicine, And Biotechnology, 46(51).
- Singh, B., J. P. Singh, A. Kaur, dan N. Singh. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 93(I).
- Suharjanto, T. (2010). Respon Hasil Kacang Komak Terhadap Periode Cekaman Kekeringan. Agrika, 4(2), 8.
- Sukandar, D., S. Nurbayti, T. Rudiana, dan T. W. Husna. (2017). Isolation and Structure Determination of Antioxidants Active Compounds from Ethyl Acetate Extract of Heartwood Namnam (Cynometra cauliflora L.). Jurnal Kimia Terapan Indonesia, 93(I), 11–17.
- Sugiyono. Metode Penelitian Kuantitatif Kualitatif Dan R & D. Bandung: Alfabeta CV, 2010. Sukatiningsih, Kurniawan, dan Windrati. (2015). Penambahan Isolat Protein Kedele Dan Sukrosa Sebagai Elisitor Terhadap Senyawa Antioksidan Dan Racun Pada Kecambah Koro Komak (Lablab Purpureus L. Sweet). Agrointek, 9(2).
- Susrama, I. G. K. (2016). Penelurusan Kacang Komak (Lablab purpureus L. Sweet). Universitas Udayana.

- Thangaraj, P. (2016). Pharmacological Assays of Plant-Based Natural Product.
- Switzerland: Springer International Publishing.
- Tobin, D. J. (2017). Introduction to Skin Aging. Journal of Tissue Viability, 26(1), 37–46.
- Tristantini, D., A. Ismawati, B. T. Pradana, dan J. G. Jonathan. (2016). Pengujian Aktivitas Antioksidan Menggunakan Metode DPPH pada Daun Tanjung (Mimusops elengi L). Tristantini.
- Vijayakumar, Ramya, S. A. G. Siti, dan F. M. Nor. (2017). Anti-Elastase, Anti- Collagenase and Antimicrobial Activities of the Underutilized Red Pitaya Peel: An in Vitro Study for Anti-Aging Applications Underutilized Red Pitaya Peel: An In Vitro Study For Anti-Aging Applications. Asian Journal Of Pharmaceutical and Clinical Research 10, no. 8.
- Wahab, N. A., A.R., R., I., A., M., S., dan P. H. (2014). Assessment of Antioxidant Capacity, Anti-collagenase and Anti-elastase Assays of Malaysian
- Unfermented Cocoa Bean for Cosmetic Application. Natural Products Chemistry Research, 2(3).
- Wardani, Elly, W. Priyo, R. D. Karina, dan S. Rojid. "Efek Antihiperglikemik Dan Antihiperkolestero Ekstrak Tempe Kacang Komak (Lablab Purpureus (L.) Sweet) Pada Hamster Diabetik Diet Tinggi Kolesterol." Pharmacy 12, no. 2 (2015): 164–175.
- Widiantara, T., Y. Taufik, dan D. Yulianti. (2018). Aktivitas Antioksidan Beberapa Ekstrak Kacang Koro (Canavalia ensiformis) Menggunakan Uji 1,1-difenil 1,2-dipikrilhidrazil (DPPH). Chimica et Natura Acta, 6(1).
- Wilkerson, S. (2018). Reactive oxygen species (ROS): Mechanisms and role in health and disease. Nova.
- Wulansari, A. N. (2018). Alternatif Cantigi Ungu (Vaccinium varingiaefolium) Sebagai Antioksidan Alami. Farmaka, 16(2).
- Zhang, S. dan E. Duan. (2018). Fighting against skin aging: the way from bench to bedside. Cell Transplantation, 27(5), 729–738.