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ABSTRACT
Electricity is a vital energy source for households, with consumption patterns influenced by seasonal
trends and external factors such as the COVID-19 pandemic. This study aims to forecast monthly

household electricity consumption at ULP Manokwari Kota using the Seasonal Autoregressive
Integrated Moving Average (SARIMA) method. The research utilizes secondary data from January
2013 to December 2022, which exhibits an upward trend and seasonal fluctuations. The Box-Jenkins
methodology is employed, involving stationarity checks, model identification, parameter
estimation, diagnostic testing, and forecasting. The dataset, spanning January 2013 to December
2022, demonstrates both an upward trend and a seasonal pattern. The forecasting process follows
the Box-Jenkins approach: checking stationarity, identifying the model, estimating parameters,
diagnosing the model, and performing forecasting. The optimal model for predicting electricity
demand in the residential sector at ULP Manokwari Kota is SARIMA (1,1,0) ((0,0,1))*12, with
parameters indicating significant autoregressive and seasonal effects. Using this model, monthly
electricity demand from January to December 2023 is forecasted. The lowest demand is projected
for February 2023 (7,274,147 kWh), while the highest is in December 2023 (7,481,067 kWh). This
research provides valuable insights for PT. PLN (Persero) ULP Manokwari Kota in planning
electricity supply and ensuring system reliability, particularly in addressing seasonal demand
variations. The study contributes to the literature by applying SARIMA to household electricity
forecasting in a region with isolated power systems, highlighting its utility for energy management
and policy formulation.
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INTRODUCTION

Electricity is a fundamental energy source that society relies on. Both state-owned and
private offices, as well as industries, are highly dependent on electricity for their activities,
making it nearly impossible to perform most tasks without it (Arnaz, 2018; Burke &
Kurniawati, 2018; Koepke et al., 2023; Obeng-Darko, 2019). This is because, in general, tools
or equipment—such as lighting, computers, printers, room temperature controllers, and
information and communication tools (internet)—are powered by electricity. Similarly, many
household appliances, including televisions, washing machines, irons, refrigerators, fans, and
cooking utensils, also depend on electricity. This illustrates that society now considers
electrical energy a basic necessity.

PT. PLN (Persero) is an Indonesian State-Owned Enterprise (BUMN) responsible for
serving the public interest by providing electricity. In line with its corporate mandate, PLN
manages the supply of electricity, which includes generating, distributing, planning, and
developing electricity infrastructure. Based on the amount of electricity consumed, PLN
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divides its customers into five categories: households, businesses, industry, public service, and
social service .

According to , there are 12 regencies and 1 municipality in West Papua Province with
isolated electricity systems, consisting of seven 20 kV systems with loads exceeding 2 MW,
namely Sorong, Fakfak, Manokwari, Kaimana, Teminabuan, and Bintuni. An isolated power
system also supplies rural electricity to 56 districts, with a peak load of less than 2 MW. PLN’s
electrical energy sales over the last five years (2015-2019) averaged 405 GWh per year, while
from 2011 to 2020, the average annual growth in electrical energy sales (in GWh) was 9.6%.

Based on electricity sales data at ULP Manokwari Kota from 2013 to 2022 obtained
from PT. PLN (Persero) ULP Manokwari Kota, it is evident that household electricity usage
fluctuates over certain periods and repeats annually. The highest electricity usage occurred in
January 2021, amounting to 8,173,444 kWh. This increase was due to the rise in COVID-19
cases in 2021, which caused many people's activities to shift to the home. This situation is a
concern for PLN, as it must continue to maintain the quality and reliability of electricity supply
in the household sector . Therefore, it is necessary to forecast the need for electrical energy,
especially in the household sector, for the coming years to ensure that supply meets demand.
To meet the demand for electrical energy, an electricity development plan is needed as a
guideline for future implementation . In other words, forecasting electricity demand greatly
assists the government, particularly PT. PLN (Persero) ULP Manokwari Kota, in setting
strategies for electricity supply.

In this article, the forecasting method used to predict household electricity usage in
kWh is SARIMA (Seasonal Autoregressive Integrated Moving Average). SARIMA is an
ARIMA model that has been modified to account for seasonal factors. Previous research on
electricity forecasting using SARIMA has been conducted by several researchers. For example,
Desvina forecasted household electricity consumption in Pekanbaru using SARIMA
(0,1,1)(0,1,1)*12, where the model was deemed feasible because the residuals met the required
assumptions. Sim also used SARIMA (0,1,1)(0,1,1)*12 to forecast energy consumption in
Malaysia, achieving a MAPE of 8.4%, which is considered very good. Sosa , in research titled
"Forecasting Electric Power Consumption Using the ARIMA Method Based on kWh of Energy
Sold," obtained ARIMA (1,1,0)(0,1,1)*12 with a MAPE of 7.966%, rated as excellent.

Accurate forecasting of electricity consumption is critical for ensuring stable supply
and efficient resource allocation. Previous studies have explored various time series models to
predict electricity demand, with the Seasonal Autoregressive Integrated Moving Average
(SARIMA) method emerging as a robust tool for capturing seasonal patterns and trends. For
instance, Desvina et al. (2018) successfully applied SARIMA to forecast household electricity
usage in Pekanbaru, while Sim et al. (2019) demonstrated its effectiveness in predicting energy
consumption in Malaysia. Similarly, Sosa et al. (2020) utilized ARIMA models to forecast
power consumption, highlighting the method’s adaptability to different contexts. These studies
underscore the versatility of SARIMA in addressing seasonal fluctuations, yet gaps remain in
its application to regions with unique consumption patterns, such as isolated power systems.

Despite advancements in forecasting techniques, there is limited research on household
electricity consumption in isolated regions like Manokwari Kota, where infrastructure and
demand dynamics differ significantly from urban centers. Existing studies often focus on large-
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scale grids or densely populated areas, leaving a gap in understanding how seasonal models
perform in smaller, geographically constrained systems. This gap is particularly pressing given
the region’s reliance on localized power grids and the potential for disruptions due to external
shocks, such as the COVID-19 pandemic, which caused unprecedented spikes in household
electricity use. Addressing this gap is essential for improving energy planning and ensuring the
reliability of supply in underserved areas.

The urgency of this research is underscored by the growing need for precise energy
forecasts to support sustainable development and infrastructure planning. In Manokwari Kota,
where electricity demand exhibits pronounced seasonal variations, inaccurate predictions could
lead to either shortages or wasteful overproduction, both of which have economic and social
consequences. The pandemic further highlighted the vulnerability of energy systems to sudden
demand shifts, emphasizing the need for resilient forecasting tools. By developing a reliable
model tailored to this region, stakeholders can optimize resource allocation, reduce costs, and
enhance service delivery, ultimately contributing to energy security and community well-
being.

This study introduces novelty by applying the SARIMA model to household electricity
consumption in an isolated power system, a context rarely explored in previous research.
Unlike broader regional studies, this work focuses on granular, monthly data from a specific
locality, offering insights into how seasonal patterns manifest in smaller-scale grids.
Additionally, the research incorporates recent data that reflect the impact of the pandemic,
providing a contemporary perspective on demand fluctuations. The methodological rigor,
including thorough stationarity checks and diagnostic testing, ensures the model’s robustness,
while the focus on practical applicability distinguishes it from purely theoretical approaches.

The primary objective of this research is to forecast household electricity consumption
in Manokwari Kota using the SARIMA model, identifying seasonal trends and validating the
model’s accuracy. By achieving this, the study aims to equip PT. PLN (Persero) ULP
Manokwari Kota with actionable insights for energy planning and infrastructure development.
The benefits extend beyond immediate utility management, offering a template for similar
regions facing seasonal demand challenges. Furthermore, the findings contribute to the broader
discourse on energy forecasting, demonstrating the adaptability of SARIMA in diverse
settings. Ultimately, this research supports sustainable energy practices and enhances the
resilience of isolated power systems.

Considering that the time series plot of electricity usage in the household sector contains
seasonality and trends, and that there has been no previous research related to forecasting the
amount of kWh usage in the household sector using SARIMA, this research aims to apply the
model to obtain the best fit and predict the electricity needs of households in Manokwari Kota.

METHOD

The Box-Jenkins methodology is employed, involving stationarity checks, model
identification, parameter estimation, diagnostic testing, and forecasting. The data which spans
from January 2013 to December 2022 has an upward trend and a seasonal pattern. Our research
data is secondary data obtained from PT. PLN (Persero) ULP Manokwari Kota. The data is a
report on results of the household sector's monthly electricity usage at ULP Manokwari Kota
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for 10 years, from January 2013 to December 2022. The research method is Seasonal

Autoregressive Integrated Moving Average (SARIMA) following Box-Jenkis methodology.

Data processing was carried out using the Microsoft Office Excel to input data. Meanwhile,

the forecasting process uses the R Studio version 1.4.1106. The R Studio is used to simplify

calculations. Several RStudio packages used for the forecasting process, i.e., library(readxl),

library(astsa), library(FitAR), library(tseries), library(urca), library(forecast), library(sarima),

library(nortest), and library(stats) (R Team, 2020).

The forecasting stages are as follows:

1. Checking stationarity
Stationarity of series can be checked either visually or theoretically. Time series plot shows
these two properties, stationarity in mean and stationarity in variance. A series is said to be
mean stationary if the curve lies around a horizontal line. In other words, the trend is flat.
Furthermore a variance stationarity series can be shown as a plot where the curve fluctuates
uniformly around the trend. Theoretically, non-stationarity in the variance can be overcome
by carrying out Box-Cox transformation. In the Box-Cox transformation process, the first
step is to estimate a parametera A. Let Z;,t > 0 be a time series . The general equation for
the Box-Cox transformation is as follows:

Zr -1
(Zt) = {

When A equals 1, the series is stationary in variance. Meanwhile, non-stationarity in mean
can be treated by applying a differentiation process on original data. Given our data is called
data, R-code for the differencing process is ‘diff(data)’. Theoretically, a differencing
process in the first order is a difference between the t-th and (t — 1)-th data. Notating the

;s A#0InnZ, ; 1=0 (1)

first differenced series by 4Z;, the differencing process in the first order is written as:

AZy =7y — Zy (2)
Checking stationarity either in variance and in mean can be theoretically done by
conducting a statistic test, Augmented Dickey-Fuller (ADF) test. The R-code of the test are
‘adf.test(data) and ur.df(data difference, lags=1, type=""trend") ‘. The test is used to test
the following hypothesis(Enders, 2008):
Hy : 6 =0 (Contains a unit root or is not stationary)
H; : § # 0 (Does not contain unit roots or stationary)
and the test statistics:

~

0 3
"TSEG ©)
where SE () is standard error of the least squares estimate of § and § = —(1 — Zfzz Bi).
The rejection criteria is to reject H, if p value < a or |t| > |M|, where 7 is the statistical
test and M is the Mackinnon's critical value. It needs to mention that we use & = 0.05 in all
statistical tests.
2. Model Identification

In this step, a non-seasonal ARIMA and a seasonal ARMA model on differentiated
series are identified using ACF and PACF plots. Theoretically, the ACF and PACF plot
patterns of non-seasonal orders (p and q) are explained in Table 1.
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Table 1. Characteristics of theoretical ACF and PACEF for stationary processes (Wei,

2006)
Process ACF PACF
AR (p) Tails off as an exponential decay or Cut of after lag p
a damped sine wave
MA (q) Cutt of after lag q Tails off as an exponential decay
or a damped sine wave
ARMA (p, q) Tails off after lag (g — p) Tails off after lag (p — q)

The seasonal part of an AR or MA model will be seen in seasonal lags (S) of the PACF and
ACF. However, before determining seasonal orders, we need to first check the stationarity
of the seasonal lags using the ADF test. The R code used to check stationarity in seasonal
lags is adf.test(data difference, k=S ) and ur.df(data difference, type="trend", lags
=12), if it reaches stationary then the value of D=0, but if it is not stationary then the
differential is carried out on the seasonal lags. The next step is then to proceed to
determining some tentative models.
3. Parameter Estimation

The most commonly used parameter estimation is the Conditional Least Square (CLS)
model. And The next step is to test the significance of the parameters using a hypothesis.
Based on the SARIMA model that has been obtained, then significancy of the parameters
are carried out under the following hypotheses:
Hy : @, =0o0r6, =0 (parameters are not significant)

Hy : @, # 0or @, # 0 (parameters are significant)
Test statistic:

__% __b
"~ SE(®p) ort= SE(Bq) 4

Rejection Criteria:
reject Hy if |t] > ta, _ v where n is the number of data and p is the number of parameters,
>

or a similar way is to compare the p-value and the significance level a, namely reject Hy if
p-value < a . After carrying out significance test, hopefully we are able to obtained a
model that meets the parameter significance test. Given p, d, q, P, D, Q, and S are the
SARIMA orders obtained in the previous step, estimating parameters in R done by
‘sarima(datadifference, p,d,q,P,D,Q,S, no.constant=TRUE)’.
4. Model Diagnostic

Diagnostic of models is carried out with the aim of checking white noise and normality
on residuals. white noise residuals can be seen visually on its ACF/PACF plot which aims
to see whether there is a serial correlation in the residuals of the observed model. A normal
data quantile vs theoretical quantile plot ( Q-Q lot), on the other hand, can give a visual plot
of normality on the residuals. The residual is assumed to be normal if the series spreads
around the diagonal line. Moreover, these two properties can be theoretically checked by
Ljung-Box test and Kolmogorov-Smirnov test.
Under Ljung-Box test, a white noise assumption is tested by the following hypothesis:
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Hy :pa, = Pa, =+ = Pq, = 0 (residual meets white noise)

Hy Aji=1,..k
Test statistics:

1A 2
Q=nn+2)Yi, M—k) pg,
Rejection criteria:

# 0 (residual does not meet the white noise)

reject Hy if Q > )(Z(K_p_q)or the p — value < a, where n is the number of data, and g,

is an estimated autocorrelation of the kth lag of residuals.

Rcode for white noise assumption used is ‘res<-residuals(model$fit),
Box.test(res,12," Ljung-Box'"), Box.test(res,24," Ljung-Box'"); Box.test(res,36," Ljung-
Box'"), Box.test(res,48," Ljung-Box”)’.

The next step is then carried out a residual normal distribution test. After visually see
the normal Q-Q plot of residuals, the investigation can be explained further through the
Kolmogrov-Smirnov test with hypothesis:

Hy, :F(a;) = Fy(a;) (residuals are normally distributed)
H, :F(a.) # Fy(a;) (residuals are not normally distributed)
Test statistic:
D = xsup|S(a;) — Fo(ar)l (5)
Rejection criteria:
Reject Hy if the value D > D(;_4)., o p — value < a where n is the number of data.
R.code for checking normality in residuals : ‘lillie.test(res)’
5. Forecasting

Based on historical data up to time t, namely Z; Z,, ... Z;_4, Z;, we will predict the value
of Z;4; which will occur / units of time in the future. For example, given time ¢ is called the
start of the forecast (forecast origin) and / is the forecast period (lead time), the forecast
value is denoted as Z,,;. The minimum mean square error estimates Z,(I) and Z,,; in the
initial forecast ¢ are given the following conditional expectations:

2:(1) = E(Zy, Zy, .. Zt) (6)
As in all statistical endeavors, apart from predicting or predicting the unknown Z;,;, an
accurate prediction for deterministic models with a white noise stochastic component {Z,}
ie.
Ze(1) = tea (7
and
Var(at(l)) =Var(Zi1) (®)
If the stochastic component is assumed to be normally distributed, then the forecast error

ac(l) =Zpyy — Zt(l) ©)
So for a given confidence level (1 — a), one can use a standard normal percentile, Z, _a to
2

set

Plez o< Zer1=Zt(D) =Zt+l_Zt(l)<Z d=1-a (10)

o var(ax(D) SE(ar(D) 1-2
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or equivalent to P th(l) -z, a /Var(at(l)) <Ziy <Z,+
z, a /Var(at(l))l =1-a.
2

Thus (1 — a)100% future observation interval Z,,; will have a prediction bound as

AOE= z, @ /Var(at(l)) (11)

where Z, _a is chosen to get the desired level of confidence. For example, if the process is
2
Gaussian, then choosing Z, _« = 2 will produce a prediction of approximately 95% of the
2

intervals for Z,(I) (Shumway & Stoffer, 2016). In obtaining the forecast, we used the
following series of R.code : ‘sarima.for(datadifferenced,p,d,q,P,D,Q,S, no.constant =
TRUE)’.

R.code of prediction limits of 95% confidence interval: ‘Upper=forecast$pred +
2*forecast$se ;Lower=forecast$pred - 2*forecastS$se’, and

R.code of prediction limits 80% confidence interval: ‘Upper= forecastSpred +
1*forecastS$se ;Lower=forecastSpred - 1*forecastS$se’.

RESULTS AND DISCUSSION
Checking Stasionary
The following plot shows a data pattern on the number of kWh usage in the household
sector at PT. PLN Persero ULP Manokwari Kota.

Te+06 Be+06

Electricity Usage in kWh

Je+06 4e+06 Se+06 6e+06

2014 ' 2016 ' 2018 | 2020 | 2022
Month-Year
Figure 1. Time Series Plot Total Electricity Usage kWh in Household Sector at PT. PLN
Persero ULP Manokwari Kota

Figure 1 shows that visually the data has a seasonal pattern as seen from the data plot

which increases and decreases over each annual period, and there is also an upward trend or
the data continues to experience an increase. Seasonal patterns can be detected from repeating
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patterns and the data will show ups and downs within a fixed period of time. The data plot
shows a seasonal effect, which is denoted by a pattern of strong decreases and increases that
repeat over time. Figure 1 shows that the amount of electricity used by the household sector
from 2013 to 2022 experienced decreases and increases over a certain period of time and
repeated every year. This is marked by a decrease every January and February from 2017 to
2022, also marked by an increase at the end of each year where the increase occurs in the period
October to December from 2013 to 2022. In January 2021 electricity usage increased sharply
of 8.173.444 kWh due to the large number of community activities that have shifted to work
from home suspected due to the increasing cases of the Covid-19 pandemic.

The next step is to identify the stationarity of the data, both in the mean and in the variance.
If the data is not yet stationary, the data will be stationary first.
1. Stationary in variance

At this stage, the first thing to do is to estimate the lambda parameter (A), with the lambda
value obtained being 0.999959. Because the value of A is close to 1, it means that the data is
stationary in variance so it does not need to be transformed.
2. Stationary in mean

The next step after stationary data in the variance is to have the data stationary relative to
the mean, because in Figure 1 it shows that the data is still not stationary with respect to the
mean and does not fluctuate around a line parallel to the time axis, so differentiation needs to
be carried out so that the data can be used for forecasting. The following is a time series plot
of electricity consumption (kWh) after the first differentiation.

1500000

0 500000

NN R

Electricity Usage

-1000000

-2000000

2014 20186 2018 2020 2022
Month-Year

Figure 2. Time series plot of differencing data

After going through the differencing process, the results of the time series plot in Figure
2 show that the data is stationary with respect to the mean and there is no longer any trend in
it. Using ADF test result, we obtained statistical test of T = —6.0559 which is less than the
critical value of -3.99, -3.43, and -3.13 at 1%, 5%, and 10% significance level, respectively.
Also, p-value = 0.01 meaning p-value < a. So, H,, is rejected, it means that the series has no
unit root and is statistically stationary.
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Identify the Tentative Model
Analyzing differenced series on its ACF and PACF plots is shown in Figure 3.

= iTnﬁT]ITITT.TT(IfTlf;[,]IIITIT.:]llf],":",f.fm
s o _FHIJ' ,,,,,,,, PR e
T T T T T T T T T T
(o] 12 24 26 48 (s1e] T2 sS4 o6 108
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(a)
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|

F"'""JW"""""'l"""""'

Partial ACF

04 02 00

Lag

(b)
Figure 3. Plot of ACF and PACF of Differenced Series

Based on Figure 3, with d = 1, identification of non-seasonal orders is explained in
Table 2.

Table 2. Identification of Non-Seasonal Orders (p and q) in Figure 3

Identification Non-seasonal order
From the ACF plot in Figure 3. It can be seen that a cuts off occurs after MA(1)
the 1st lag. Then, the PACF plot is considered tails off
PACEF plot in Figure 3. It can be seen that a cuts off occurs after the 1st AR(1)
lag. Then, the ACF Plot is considered tails off
Combined ACF and PACEF identification results ARMA(1,1)

Based on Figure 3, which is an ACF plot of differencing data, it indicates that the data
has seasonal characteristics because there is a significant ACF value at lag 12 so that the S
value = 12. Then again the seasonality of 12 is tested for stationarity by carrying out the ADF
test on lag multiples of 12. The results of the ADF test on lag multiples of 12 have a p-value of
0.03923 which is smaller than & = 0.05, which means the seasonal lag has stationary, and no
differentiation is needed, the D = 0. In Figure 3 it can be seen that the ACF plot is truncated
after 24 lags, so that the order MA (1)*? atauiMA (2)*? is obtained for seasonal models.

Based on Table 2, identifying the non-seasonal order and the order for the seasonal
model, the Tentative model SARIMA (0,1,1)(0,0,1)*2, SARIMA (0,1,1)(0,0,2)*?, SARIMA
(1,1,0)(0,0,2)2, SARIMA  (1,1,0)(0,0,1)*?, SARIMA  (1,1,1)(0,0,2)*?, and
SARIMA(1,1,1)(0,0,1)*2.
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Parameter Estimation and Significance Test
Summary Significant tests for several tentative models can be seen in Table 3.

Table 3. Model Parameter Estimation

Model Type Parameter Nilai [z p-value Significance AIC
Estimated
Value
SARIMA MA 1 -0,5245 -7,4715 0,0000 Significant 28.1014
(0,1,1)(0,0,1)*2 SMA 12 0,1684 1,9446 0,0541 Not Significant
SARIMA MA 1 -0,5606 -8,0546 0,0000 Significant 28.0614
(0,1,1)(0,0,2)*2 SMA 12 0,0781 0,7354 0,4635 Not Significant
SMA 24 0,3190 2,5459 0,0122 Significant
SARIMA AR'1 -0,5204 -6,5873 0,0000 Significant 28.0911
(1,1,0)(0,0,H)*?  SMA 12 0,1813 2,0815 0,0395 Significant
SARIMA AR'1 -0,5396 -6,9003 0,0000 Significant 28.0602
(1,1,0)(0,0,2)*2 SMA 12 0,0999 0,9416 0,3483 Not Significant
SMA 24 0,2887 2,3414 0,0209 Significant
SARIMA AR'1 -0,3103 -1,8264 0,0703 Not Significant 28.0909
(1,1,1)(0,0,1)2 MA 1 -0,2931 -1,6402 0,1036 Not Significant
SMA 12 0,1645 1,8995 0,0599 Not Significant
SARIMA AR'1 -0,3044 -1,9948 0,0484 Significant 28.0472
(1,1,1)(0,0,2)? MA 1 -0,3506 -2,2474 0,0265 Significant
SMA 12 0,0633 0,5994 0,5500 Not Significant
SMA 24 0,3322 2,6219 0,0099 Significant

Table 3 shows that from the results of estimating model parameters, only one model
with significant parameters (p-value < 0.05). Because only one model satisfies the significant
parameter test, the AIC criteria are not needed to determine the best model. Based on TABLE
3, the model that satisfies the significant parameter test or rejects Hy is the SARIMA
(1,1,0)(0,0, 1)12 model, so it is suitable for use in the next stage, namely checking the residual
assumptions.

Diagnostic Model
Diagnostic model using graphics from the data can be seen in Figure 4.

Model: (1,1,0) (0,0,1) [12] Standardized Residuals
<]

T T T
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Figure 4. Diagnostic Plots SARIMA (1, 1,0)(0,0, 1)?

It can be seen from the model diagnostic results in Figure 4, the SARIMA
(1,1,0)(0,0, 1)1 model is a good model, from the ACF plot it can be seen that the residual is
already a white noise model, indicated by the absence of lag (= 1) outside the significance
band, also the p-value of the Ljung-Box statistic is also above the 5% significance level line,
which indicates that the null hypothesis of residuals not containing serial correlation is
accepted. This can be further explained by residual testing using the Ljung-Box Test.

a. White noise assumption
A summary of the results of the Ljung - Box test on lines 12, 24, 36, and 48 of the Rstudio
output can be seen in Table 4:
Table 4. p-value of Ljung-Box Test

lag p-value Independency of Residuals
SARIMA 12 0,7175 independence
(1,1,0)(0,0,1)'? 24 0,773 independence
36 0,7341 independence
48 0,7954 independence

Based on Table 4, the SARIMA model (1,1, 0)(0, 0, 1)12 fulfills the assumption of residual
independence at lags 12, 24, 36, and 48. It can be concluded that it failed to reject H, because
the p-value of Ljung-Box is more than a ( a=0.05).

b. Normal Distribution Assumption

The next stage is after the assumption of white noise is met, then we do the residual normal
distribution test. Checking the normality of the residuals visually is shown through the residual
probability plot shown in figure 4, especially in the QQ-norm Standard residuals plot, it can
be seen that most of the residuals spread around the diagonal line and follow the direction of
the diagonal line, but there are two points that spread far from the diagonal line and causes the
residuals to not have a normal distribution. This can be further explained through the
Kolmogrov-Smirnov test. A summary of the results of the Kolmogrov-Smirnov test can be
seen in table 5.

Table 5. Kolmogrov-Smirnov test

Kolmogrov-Smirnov test
D 0,10802
p-value 0,001541

Based on table 5, the SARIMA model (1,1,0)(0,0,1)*? does not meet the residual
normality assumption because it rejects Hy or p — value < a (a = 0.05), it can be concluded
that the residuals are not normally distributed. This can be ignored and continued at the next

stage, because the residual normality test is not as important as the white noise test (Rosadi,
2014).
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Forecasting
The following are the results of forecasting the electrical energy needs of the household

sector for the 12 future periods shown in Table 3, using the SARIMA model (1, 1,0)(0, 0, 1)*2
with a value of @; =-0,5204, @; = 0,1813. The form of the SARIMA (1,1,0)(0,0,1)*?
model is expanded as follows:

0, (B)®p(B)*(1 — B)(1 = BS)PZ; = 6,(B)0o(B%)a,

®,(B)(®0)(B)'*(1 — B)'(1 — B*)°Z, = 6,(B)6,(B*")a;

@,(B)(1 — B)'Z, = 0,(B**)a,

(1-9,B)(1-B)Z, = (1 - 6,B")a,

(1-B-0.B+9,B)Z, =(1—0,B%)a,

Z,—BZ,— 0,BZ, + ,B*Z, = a;, — 0;B?qa,

Zy=Ziq =01 Zi g +B1Zpp = ap — 010,15

Zy=Zp g+ 01724 — 01Ze— + ap — 0101,

Zy =1+ 0)Ziq — D175 + ap + 010,15

Z;=(1405204)Z;_, + 0,5204Z,_, + a; + 0,1813a,_,, With a,~N(0,0,),0,% =
8.766 X 10 and Z, = Z, — Z;_;.

Table 6. Forecasts. The demand for Electrical Energy in the ULP Manokwari Kota
Household Sector January 2023- December 2023

Month Prediction Results Lo 80 Hi 80 Lo 95 Hi 95
January 2023 7.293.715 6.996.044 7.591.386 6.698.373 7.889.057
February 2023 7.274.147 6.944.539 7.603.756 6.614.930 7.933.364
March 2023 7.382.270 7.023.556 7.740.983 6.664.843 8.099.697
april 2023 7.424.495 7.038.867 7.810.123 6.653.239 8.195.751
may 2023 7.417.191 7.006.408 7.827.974 6.595.625 8.238.757
June 2023 7.422.706 6.988.222 7.857.189 6.553.738 8.291.673
July 2023 7.400.869 6.943.912 7.857.826 6.486.955 8.314.783
August 2023 7.402.529 6.924.153 7.880.905 6.445.777 8.359.280
september 2023 7.408.057 6.909.181 7.906.933 6.410.306 8.405.808
October 2023 7.466.918 6.948.352 7.985.484 6.429.786 8.504.049
November 2023 7.428.624 6.891.088 7.966.159 6.353.553 8.503.694
december 2023 7.481.067 6.925.209 8.036.924 6.369.351 8.592.782

where,

Hi 80 means Upper bound with 80% confidence interval;
Lo 80 means Lower bound with 80% confidence interval;
Hi 95 means Upper bound with 95% confidence interval;
Lo 95 means Lower bound with 95% confidence interval.

Based on Table 6, The lowest demand occurred in February 2023 and the highest is in
December 2023, i.e., 7.274.147 kWh and 7.481.067 kWh, respectively. The plot of forecasting
the energy needs of the electricity for the months January 2023 to December 2023 can be seen
in Figure S.
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Figure 5. Forecasting Results of Electrical Energy Needs for the ULP Manokawari City
Household Sector, January 2023 — December 2023
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Figure 5 shows that the results of forecasting the electricity demand for the household
sector at PT. PLN (Persero) Manokwari Kota ULP for January 2023 to December 2023 is in
the upper and lower bound intervals, with the 80% confidence interval in light gray and the
95% confidence interval in dark grey.

CONCLUSION

Based on the application of the Seasonal Autoregressive Integrated Moving Average
(SARIMA) method, the study identified SARIMA (1,1,0)(0,0,1)1212 as the most effective
model for forecasting household electricity demand in ULP Manokwari Kota, accurately
capturing both seasonal and trend components. The model forecasts that electricity demand in
2023 will fluctuate, with the lowest consumption anticipated in February at 7,274,147 kWh
and the highest in December at 7,481,067 kWh, reflecting the influence of seasonal factors
over the 12-month period. For future research, it is recommended to explore the integration of
exogenous variables—such as weather patterns, economic indicators, or policy changes—into
the forecasting model to further enhance prediction accuracy and provide deeper insights into
the drivers of electricity demand in isolated power systems.
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