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ABSTRACT 

Electricity is a vital energy source for households, with consumption patterns influenced by seasonal 

trends and external factors such as the COVID-19 pandemic. This study aims to forecast monthly 

household electricity consumption at ULP Manokwari Kota using the Seasonal Autoregressive 

Integrated Moving Average (SARIMA) method. The research utilizes secondary data from January 

2013 to December 2022, which exhibits an upward trend and seasonal fluctuations. The Box-Jenkins 

methodology is employed, involving stationarity checks, model identification, parameter 

estimation, diagnostic testing, and forecasting. The dataset, spanning January 2013 to December 

2022, demonstrates both an upward trend and a seasonal pattern. The forecasting process follows 

the Box-Jenkins approach: checking stationarity, identifying the model, estimating parameters, 

diagnosing the model, and performing forecasting. The optimal model for predicting electricity 

demand in the residential sector at ULP Manokwari Kota is SARIMA (1,1,0) ((0,0,1))^12, with 

parameters indicating significant autoregressive and seasonal effects. Using this model, monthly 

electricity demand from January to December 2023 is forecasted. The lowest demand is projected 

for February 2023 (7,274,147 kWh), while the highest is in December 2023 (7,481,067 kWh). This 

research provides valuable insights for PT. PLN (Persero) ULP Manokwari Kota in planning 

electricity supply and ensuring system reliability, particularly in addressing seasonal demand 

variations. The study contributes to the literature by applying SARIMA to household electricity 

forecasting in a region with isolated power systems, highlighting its utility for energy management 

and policy formulation.  
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INTRODUCTION 

Electricity is a fundamental energy source that society relies on. Both state-owned and 

private offices, as well as industries, are highly dependent on electricity for their activities, 

making it nearly impossible to perform most tasks without it (Arnaz, 2018; Burke & 

Kurniawati, 2018; Koepke et al., 2023; Obeng-Darko, 2019). This is because, in general, tools 

or equipment—such as lighting, computers, printers, room temperature controllers, and 

information and communication tools (internet)—are powered by electricity. Similarly, many 

household appliances, including televisions, washing machines, irons, refrigerators, fans, and 

cooking utensils, also depend on electricity. This illustrates that society now considers 

electrical energy a basic necessity. 

PT. PLN (Persero) is an Indonesian State-Owned Enterprise (BUMN) responsible for 

serving the public interest by providing electricity. In line with its corporate mandate, PLN 

manages the supply of electricity, which includes generating, distributing, planning, and 

developing electricity infrastructure. Based on the amount of electricity consumed, PLN 

http://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1
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divides its customers into five categories: households, businesses, industry, public service, and 

social service . 

According to , there are 12 regencies and 1 municipality in West Papua Province with 

isolated electricity systems, consisting of seven 20 kV systems with loads exceeding 2 MW, 

namely Sorong, Fakfak, Manokwari, Kaimana, Teminabuan, and Bintuni. An isolated power 

system also supplies rural electricity to 56 districts, with a peak load of less than 2 MW. PLN’s 

electrical energy sales over the last five years (2015–2019) averaged 405 GWh per year, while 

from 2011 to 2020, the average annual growth in electrical energy sales (in GWh) was 9.6%. 

Based on electricity sales data at ULP Manokwari Kota from 2013 to 2022 obtained 

from PT. PLN (Persero) ULP Manokwari Kota, it is evident that household electricity usage 

fluctuates over certain periods and repeats annually. The highest electricity usage occurred in 

January 2021, amounting to 8,173,444 kWh. This increase was due to the rise in COVID-19 

cases in 2021, which caused many people's activities to shift to the home. This situation is a 

concern for PLN, as it must continue to maintain the quality and reliability of electricity supply 

in the household sector . Therefore, it is necessary to forecast the need for electrical energy, 

especially in the household sector, for the coming years to ensure that supply meets demand. 

To meet the demand for electrical energy, an electricity development plan is needed as a 

guideline for future implementation . In other words, forecasting electricity demand greatly 

assists the government, particularly PT. PLN (Persero) ULP Manokwari Kota, in setting 

strategies for electricity supply. 

In this article, the forecasting method used to predict household electricity usage in 

kWh is SARIMA (Seasonal Autoregressive Integrated Moving Average). SARIMA is an 

ARIMA model that has been modified to account for seasonal factors. Previous research on 

electricity forecasting using SARIMA has been conducted by several researchers. For example, 

Desvina forecasted household electricity consumption in Pekanbaru using SARIMA 

(0,1,1)(0,1,1)^12, where the model was deemed feasible because the residuals met the required 

assumptions. Sim also used SARIMA (0,1,1)(0,1,1)^12 to forecast energy consumption in 

Malaysia, achieving a MAPE of 8.4%, which is considered very good. Sosa , in research titled 

"Forecasting Electric Power Consumption Using the ARIMA Method Based on kWh of Energy 

Sold," obtained ARIMA (1,1,0)(0,1,1)^12 with a MAPE of 7.966%, rated as excellent. 

Accurate forecasting of electricity consumption is critical for ensuring stable supply 

and efficient resource allocation. Previous studies have explored various time series models to 

predict electricity demand, with the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) method emerging as a robust tool for capturing seasonal patterns and trends. For 

instance, Desvina et al. (2018) successfully applied SARIMA to forecast household electricity 

usage in Pekanbaru, while Sim et al. (2019) demonstrated its effectiveness in predicting energy 

consumption in Malaysia. Similarly, Sosa et al. (2020) utilized ARIMA models to forecast 

power consumption, highlighting the method’s adaptability to different contexts. These studies 

underscore the versatility of SARIMA in addressing seasonal fluctuations, yet gaps remain in 

its application to regions with unique consumption patterns, such as isolated power systems. 

Despite advancements in forecasting techniques, there is limited research on household 

electricity consumption in isolated regions like Manokwari Kota, where infrastructure and 

demand dynamics differ significantly from urban centers. Existing studies often focus on large-
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scale grids or densely populated areas, leaving a gap in understanding how seasonal models 

perform in smaller, geographically constrained systems. This gap is particularly pressing given 

the region’s reliance on localized power grids and the potential for disruptions due to external 

shocks, such as the COVID-19 pandemic, which caused unprecedented spikes in household 

electricity use. Addressing this gap is essential for improving energy planning and ensuring the 

reliability of supply in underserved areas. 

The urgency of this research is underscored by the growing need for precise energy 

forecasts to support sustainable development and infrastructure planning. In Manokwari Kota, 

where electricity demand exhibits pronounced seasonal variations, inaccurate predictions could 

lead to either shortages or wasteful overproduction, both of which have economic and social 

consequences. The pandemic further highlighted the vulnerability of energy systems to sudden 

demand shifts, emphasizing the need for resilient forecasting tools. By developing a reliable 

model tailored to this region, stakeholders can optimize resource allocation, reduce costs, and 

enhance service delivery, ultimately contributing to energy security and community well-

being. 

This study introduces novelty by applying the SARIMA model to household electricity 

consumption in an isolated power system, a context rarely explored in previous research. 

Unlike broader regional studies, this work focuses on granular, monthly data from a specific 

locality, offering insights into how seasonal patterns manifest in smaller-scale grids. 

Additionally, the research incorporates recent data that reflect the impact of the pandemic, 

providing a contemporary perspective on demand fluctuations. The methodological rigor, 

including thorough stationarity checks and diagnostic testing, ensures the model’s robustness, 

while the focus on practical applicability distinguishes it from purely theoretical approaches. 

The primary objective of this research is to forecast household electricity consumption 

in Manokwari Kota using the SARIMA model, identifying seasonal trends and validating the 

model’s accuracy. By achieving this, the study aims to equip PT. PLN (Persero) ULP 

Manokwari Kota with actionable insights for energy planning and infrastructure development. 

The benefits extend beyond immediate utility management, offering a template for similar 

regions facing seasonal demand challenges. Furthermore, the findings contribute to the broader 

discourse on energy forecasting, demonstrating the adaptability of SARIMA in diverse 

settings. Ultimately, this research supports sustainable energy practices and enhances the 

resilience of isolated power systems. 

Considering that the time series plot of electricity usage in the household sector contains 

seasonality and trends, and that there has been no previous research related to forecasting the 

amount of kWh usage in the household sector using SARIMA, this research aims to apply the 

model to obtain the best fit and predict the electricity needs of households in Manokwari Kota. 

 

METHOD 

The Box-Jenkins methodology is employed, involving stationarity checks, model 

identification, parameter estimation, diagnostic testing, and forecasting. The data which spans 

from January 2013 to December 2022 has an upward trend and a seasonal pattern. Our research 

data is secondary data obtained from PT. PLN (Persero) ULP Manokwari Kota. The data is a 

report on  results of the household sector's monthly electricity usage at ULP Manokwari Kota 
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for 10 years, from January 2013 to December 2022. The research method is Seasonal 

Autoregressive Integrated Moving Average (SARIMA)  following Box-Jenkis methodology. 

Data processing was carried out using the Microsoft Office Excel to input data. Meanwhile, 

the forecasting process uses the R Studio version 1.4.1106. The R Studio is used to simplify 

calculations. Several RStudio packages used for the forecasting process, i.e., library(readxl), 

library(astsa), library(FitAR), library(tseries), library(urca), library(forecast), library(sarima), 

library(nortest), and library(stats) (R Team, 2020). 

The forecasting stages are as follows: 

1. Checking stationarity 

 Stationarity of series can be checked either visually or theoretically. Time series plot shows 

these two properties, stationarity in mean and stationarity in variance. A series is said to be 

mean stationary if the curve lies around a horizontal line. In other words, the trend is flat. 

Furthermore a variance stationarity series can be shown as a plot where the curve fluctuates 

uniformly around the trend. Theoretically, non-stationarity in the variance can be overcome 

by carrying out  Box-Cox transformation. In the Box-Cox transformation process, the first 

step is to estimate a parametera λ. Let 𝑍𝑡 , 𝑡 > 0 be a time series . The general equation for 

the Box-Cox transformation is as follows: 

(𝑍𝑡) = {
𝑍𝑡

𝜆 − 1

𝜆
 𝑖 ;  𝑖𝜆 ≠ 0 𝑙𝑛 𝑙𝑛 𝑍𝑡  𝑖 ;  𝑖𝜆 = 0  (1) 

 When 𝜆 equals 1, the series is stationary in variance. Meanwhile, non-stationarity in mean 

can be treated by applying a differentiation process on original data. Given our data is called 

data,  R-code for the differencing process is ‘diff(data)’. Theoretically, a differencing 

process in the first order is a difference between the 𝑡-th and  (𝑡 − 1)-th data. Notating the 

first differenced series by 𝛥𝑍𝑡, the differencing process in the first order is written as: 

𝛥𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1 (2) 

 Checking stationarity  either in variance and in mean can be theoretically done by 

conducting a statistic test, Augmented Dickey-Fuller (ADF) test. The R-code of  the test are 

‘adf.test(data) and ur.df(data difference, lags=1, type="trend") ‘. The test is used to test 

the following hypothesis(Enders, 2008): 

𝐻0 𝑖: 𝑖𝛿 = 0  (Contains a unit root or is not stationary) 

𝐻1 𝑖: 𝑖𝛿 ≠ 0  (Does not contain unit roots or stationary) 

and the test statistics: 

𝜏 =
𝛿

𝑆𝐸(𝛿̂)
 (3) 

where 𝑆𝐸(𝛿̂) is standard error of the least squares estimate of 𝛿 and 𝛿̂ = −(1 − ∑𝑝
𝑖=2 𝛽𝑖).  

The rejection criteria is to reject 𝐻0  if 𝑝 𝑣𝑎𝑙𝑢𝑒 < 𝛼 or |𝜏| > |𝑀|, where 𝜏 is the statistical 

test and M is the Mackinnon's critical value. It needs to mention that we use 𝛼 = 0.05 in all 

statistical tests.  

2. Model Identification 

  In this step, a non-seasonal ARIMA and a seasonal ARMA model on differentiated 

series are identified using ACF and PACF plots. Theoretically, the ACF and PACF plot 

patterns of non-seasonal orders (𝑝 𝑎𝑛𝑑 𝑞) are explained in Table 1. 
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Table 1. Characteristics of theoretical ACF and PACF for stationary processes (Wei, 

2006) 

Process ACF PACF 

AR (𝒑) 

 

Tails off as an exponential decay or 

a damped sine wave 

Cut of after lag 𝑝 

MA (𝒒) Cutt of after lag 𝑞 Tails off as an exponential decay 

or a damped sine wave 

ARMA (𝒑, 𝒒) Tails off after lag (𝑞 − 𝑝) Tails off after lag (𝑝 − 𝑞) 

  

 The seasonal part of an AR or MA model will be seen in seasonal lags (S) of the PACF and 

ACF. However, before determining seasonal orders, we need to first check the stationarity 

of the seasonal lags using the ADF test. The R code used to check stationarity in seasonal 

lags is adf.test(data difference, k=S ) and ur.df(data difference, type="trend", lags 

=12), if it reaches stationary then the value of D=0, but if it is not stationary then the 

differential is carried out on the seasonal lags. The next step is then to proceed to 

determining some tentative models. 

3. Parameter Estimation  

 The most commonly used parameter estimation is the Conditional Least Square (CLS) 

model. And The next step is to test the significance of the parameters using a hypothesis. 

Based on the SARIMA model that has been obtained, then significancy of the parameters 

are carried out under the following hypotheses: 

𝐻0 𝑖: 𝑖∅𝑝 = 0 or 𝜃𝑞 = 0  (parameters are not significant)  

𝐻1 𝑖: 𝑖∅𝑝 ≠ 0 or ∅𝑞 ≠ 0  (parameters are significant) 

 Test statistic: 

𝑡 =
∅̂𝑝

𝑆𝐸(∅̂𝑝)
  or  𝑡 =

𝜃̂𝑞

𝑆𝐸(𝜃̂𝑞)
 (4) 

Rejection Criteria: 

reject 𝐻0 if |𝑡| > 𝑡𝛼

2
;𝑛−𝑝 where 𝑛 is the number of data and 𝑝 is the number of parameters, 

or a similar way is to compare the p-value and the significance level 𝛼, namely reject 𝐻0 if 

p-value < 𝛼 . After carrying out  significance test, hopefully we are able to obtained a 

model that meets the parameter significance test. Given p, d, q, P, D, Q , and S are the 

SARIMA orders obtained in the previous step, estimating parameters in R  done by 

‘sarima(datadifference, p,d,q,P,D,Q,S, no.constant=TRUE)’. 

4. Model Diagnostic  

  Diagnostic of models is carried out with the aim of checking white noise and normality  

on residuals. white noise residuals can be seen visually on its ACF/PACF  plot  which aims 

to see whether there is a serial correlation in the residuals of the observed model. A normal 

data quantile vs theoretical quantile plot ( Q-Q lot), on the other hand,  can give a visual plot 

of normality on the residuals. The residual is assumed to be normal if the series spreads 

around the diagonal line. Moreover, these two properties can be theoretically checked by 

Ljung-Box test and  Kolmogorov-Smirnov test.  

Under Ljung-Box test, a white noise assumption is tested by the following hypothesis: 
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𝐻0   : 𝜌𝑎1
= 𝜌𝑎2

= ⋯ = 𝜌𝑎𝑘
= 0 (residual meets white noise) 

𝐻1  𝑖: ∃𝜌𝑎𝑖;𝑖=1,…,𝑘
≠ 0    (residual does not meet the white noise) 

Test statistics: 

𝑄 = 𝑛(𝑛 + 2) ∑𝑛
𝑘=1 (𝑛 − 𝑘)−1𝜌̂𝑎𝑘

2
   

 Rejection criteria:  

 reject 𝐻0 if 𝑄 > 𝜒2
(𝐾−𝑝−𝑞)

or the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <    𝛼, where 𝑛 is the number of data,  and 𝜌̂𝑎𝑘
 

is an estimated autocorrelation of the 𝑘th lag of residuals. 

 Rcode for white noise assumption used is ‘res<-residuals(model$fit); 

Box.test(res,12,"Ljung-Box"), Box.test(res,24,"Ljung-Box"); Box.test(res,36,"Ljung-

Box"), Box.test(res,48,"Ljung-Box”)’. 

 The next step is then carried out a residual normal distribution test. After visually see 

the normal Q-Q plot of residuals, the investigation can be explained further through the 

Kolmogrov-Smirnov test with hypothesis: 

𝐻0  ∶ : 𝐹(𝑎𝑡) = 𝐹0(𝑎𝑡) (residuals are normally distributed) 

𝐻1 𝑖 𝑖: 𝐹(𝑎𝑡) ≠ 𝐹0(𝑎𝑡) (residuals are not normally distributed) 

Test statistic: 

𝐷 = 𝑥𝑠𝑢𝑝|𝑆(𝑎𝑡) − 𝐹0(𝑎𝑡)| (5) 

Rejection criteria: 

Reject 𝐻0 if the value 𝐷 > 𝐷(1−𝛼);𝑛 𝑜𝑟 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼  where 𝑛 is the number of data. 

R.code for checking normality in residuals : ‘lillie.test(res)’ 

5. Forecasting 

  Based on historical data up to time t, namely 𝑍1.𝑍2, … 𝑍𝑡−1, 𝑍𝑡, we will predict the value 

of 𝑍𝑡+𝑙 which will occur l units of time in the future. For example, given time t is called the 

start of the forecast (forecast origin) and l is the forecast period (lead time), the forecast 

value is denoted as 𝑍𝑡+𝑙. The minimum mean square error estimates 𝑍̂𝑡(𝑙) and 𝑍𝑡+𝑙 in the 

initial forecast t are given the following conditional expectations: 

𝑍̂𝑡(𝑙) = 𝐸(𝑍1, 𝑍2, … 𝑍𝑡 ) (6) 

 As in all statistical endeavors, apart from predicting or predicting the unknown 𝑍𝑡+𝑙, an 

accurate prediction for deterministic models with a white noise stochastic component {𝑍𝑡} 

i.e. 

𝑍̂𝑡(𝑙) = 𝜇𝑡+𝑙 (7) 

and 

𝑉𝑎𝑟(𝑎𝑡(𝑙)) = 𝑉𝑎𝑟(𝑍𝑡+𝑙) (8) 

If the stochastic component is assumed to be normally distributed, then the forecast error

  

𝑎𝑡(𝑙) = 𝑍𝑡+𝑙 − 𝑍̂𝑡(𝑙) (9) 

So for a given confidence level (1 − 𝛼), one can use a standard normal percentile, 𝑍1−
𝛼

2
  to 

set 

𝑃 [−𝑧1−
𝛼

2
<

𝑍𝑡+𝑙−𝑍̂𝑡(𝑙)

√𝑉𝑎𝑟(𝑎𝑡(𝑙))
=

𝑍𝑡+𝑙−𝑍̂𝑡(𝑙)

𝑆𝐸(𝑎𝑡(𝑙))
< 𝑧1−

𝛼

2
] = 1 − 𝛼. (10) 
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or equivalent to          𝑃 [𝑍̂𝑡(𝑙) − 𝑧1−
𝛼

2

√𝑉𝑎𝑟(𝑎𝑡(𝑙)) < 𝑍𝑡+𝑙 < 𝑍̂𝑡(𝑙) +

𝑧1−
𝛼

2

√𝑉𝑎𝑟(𝑎𝑡(𝑙))] = 1 − 𝛼.   

Thus (1 − 𝛼)100% future observation interval 𝑍𝑡+𝑙 will have a prediction bound as 

𝑍̂𝑡(𝑙) ± 𝑧
1−

𝛼
2

√𝑉𝑎𝑟(𝑎𝑡(𝑙)) (11) 

where 𝑍1−
𝛼

2
 is chosen to get the desired level of confidence. For example, if the process is 

Gaussian, then choosing 𝑍1−
𝛼

2
  = 2 will produce a prediction of approximately 95% of the 

intervals for 𝑍̂𝑡(𝑙) (Shumway & Stoffer, 2016). In obtaining the forecast, we used the 

following series of R.code : ‘sarima.for(datadifferenced,p,d,q,P,D,Q,S, no.constant = 

TRUE)’. 

R.code of prediction limits of 95% confidence interval: ‘Upper=forecast$pred + 

2*forecast$se ;Lower=forecast$pred - 2*forecast$se’, and  

R.code of prediction limits 80% confidence interval: ‘Upper= forecast$pred + 

1*forecast$se ;Lower=forecast$pred - 1*forecast$se’. 

 

RESULTS AND DISCUSSION 

Checking Stasionary 

The following plot shows a data pattern on the number of kWh usage in the household 

sector at PT. PLN Persero ULP Manokwari Kota. 

 

 
Figure 1. Time Series Plot Total Electricity Usage kWh in Household Sector at PT. PLN 

Persero ULP Manokwari Kota 

 

Figure 1 shows that visually the data has a seasonal pattern as seen from the data plot 

which increases and decreases over each annual period, and there is also an upward trend or 

the data continues to experience an increase. Seasonal patterns can be detected from repeating 
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patterns and the data will show ups and downs within a fixed period of time. The data plot 

shows a seasonal effect, which is denoted by a pattern of strong decreases and increases that 

repeat over time. Figure 1 shows that the amount of electricity used by the household sector 

from 2013 to 2022 experienced decreases and increases over a certain period of time and 

repeated every year. This is marked by a decrease every January and February from 2017 to 

2022, also marked by an increase at the end of each year where the increase occurs in the period 

October to December from 2013 to 2022. In January 2021 electricity usage increased sharply 

of 8.173.444 kWh due to the large number of community activities that have shifted to work 

from home suspected due to the increasing cases of the Covid-19 pandemic. 

  The next step is to identify the stationarity of the data, both in the mean and in the variance. 

If the data is not yet stationary, the data will be stationary first. 

1. Stationary in variance 

 At this stage, the first thing to do is to estimate the lambda parameter (λ), with the lambda 

value obtained being 0.999959. Because the value of λ is close to 1, it means that the data is 

stationary in variance so it does not need to be transformed. 

2.  Stationary in mean 

 The next step after stationary data in the variance is to have the data stationary relative to 

the mean, because in Figure 1 it shows that the data is still not stationary with respect to the 

mean and does not fluctuate around a line parallel to the time axis, so differentiation needs to 

be carried out so that the data can be used for forecasting. The following is a time series plot 

of electricity consumption (kWh) after the first differentiation. 

 

 
Figure 2. Time series plot of differencing data 

   

  After going through the differencing process, the results of the time series plot in Figure 

2 show that the data is stationary with respect to the mean and there is no longer any trend in 

it. Using ADF test result, we obtained statistical test of 𝜏 =  −6.0559 which is less than the 

critical value of -3.99, -3.43, and -3.13 at 1%, 5%, and 10% significance level, respectively. 

Also,  p-value = 0.01 meaning p-value < 𝛼. So, 𝐻0 is rejected, it means that the series has no 

unit root and is statistically stationary. 
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Identify the Tentative Model 

 Analyzing differenced series on its ACF and PACF plots is shown in Figure 3. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 3. Plot of ACF and PACF of Differenced Series 

 

Based on Figure 3, with  𝑑 = 1, identification of non-seasonal orders is explained in 

Table 2. 

 

Table 2. Identification of Non-Seasonal Orders (p and q) in Figure 3 

Identification Non-seasonal order 

From the ACF plot in Figure 3. It can be seen that a cuts off occurs after 

the 1st lag. Then, the PACF plot is considered tails off 

MA(1) 

PACF plot in Figure 3. It can be seen that a cuts off occurs after the 1st 

lag. Then, the ACF Plot is considered tails off 

AR(1) 

Combined ACF and PACF identification results ARMA(1,1) 

 

Based on Figure 3, which is an ACF plot of differencing data, it indicates that the data 

has seasonal characteristics because there is a significant ACF value at lag 12 so that the S 

value = 12. Then again the seasonality of 12 is tested for stationarity by carrying out the ADF 

test on lag multiples of 12. The results of the ADF test on lag multiples of 12 have a p-value of 

0.03923 which is smaller than 𝛼 = 0.05, which means the seasonal lag has stationary, and no 

differentiation is needed,  the 𝐷 = 0. In Figure 3 it can be seen that the ACF plot is truncated 

after 24 lags, so that the order MA(1)12 atauiMA(2)12 is obtained for seasonal models. 

Based on Table 2, identifying the non-seasonal order and the order for the seasonal 

model, the Tentative model SARIMA (0,1,1)(0,0,1)12, SARIMA (0,1,1)(0,0,2)12, SARIMA 

(1,1,0)(0,0,2)12, SARIMA (1,1,0)(0,0,1)12, SARIMA (1,1,1)(0,0,2)12, and 

SARIMA(1,1,1)(0,0,1)12. 
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Parameter Estimation and Significance Test 

Summary Significant tests for several tentative models can be seen in Table 3. 

 

Table 3. Model Parameter Estimation 

Model Type Parameter 

Estimated 

Value 

Nilai |𝒕| p-value Significance AIC 

SARIMA 

(0, 1, 1)(0, 0, 1)12 

MA 1 

SMA 12 

-0,5245 

0,1684 

-7,4715 

1,9446 

0,0000 

0,0541 

Significant  

Not Significant 

28.1014 

SARIMA 

(0, 1, 1)(0, 0, 2)12 

MA 1 

SMA 12 

SMA 24 

-0,5606 

0,0781 

0,3190 

-8,0546 

0,7354 

2,5459 

0,0000 

0,4635 

0,0122 

Significant  

Not Significant 

Significant  

28.0614 

SARIMA 

(1, 1, 0)(0, 0, 1)12 

AR 1 

SMA 12 

-0,5204 

0,1813 

-6,5873 

2,0815 

0,0000 

0,0395 

Significant 

Significant 

28.0911 

SARIMA 

(1, 1, 0)(0, 0, 2)12 

AR 1 

SMA 12 

SMA 24 

-0,5396 

0,0999 

0,2887 

-6,9003 

0,9416 

2,3414 

0,0000 

0,3483 

0,0209 

Significant  

Not Significant 

Significant  

28.0602 

SARIMA 

(1, 1, 1)(0, 0, 1)12 

AR 1 

MA 1 

SMA 12 

-0,3103 

-0,2931 

0,1645 

-1,8264 

-1,6402 

1,8995 

0,0703 

0,1036 

0,0599 

Not Significant 

Not Significant 

Not Significant 

28.0909 

SARIMA 

(1, 1, 1)(0, 0, 2)12 

AR 1 

MA 1 

SMA 12 

SMA 24 

-0,3044 

-0,3506 

0,0633 

0,3322 

-1,9948 

-2,2474 

0,5994 

2,6219 

0,0484 

0,0265 

0,5500 

0,0099 

Significant 

Significant 

Not Significant 

Significant 

28.0472 

 

Table 3 shows that from the results of estimating model parameters, only one model 

with significant parameters (p-value < 0.05). Because only one model satisfies the significant 

parameter test, the AIC criteria are not needed to determine the best model. Based on TABLE 

3, the model that satisfies the  significant parameter test or rejects 𝐻0 is the SARIMA 

(1, 1, 0)(0, 0, 1)12 model, so it is suitable for use in the next stage, namely checking the residual 

assumptions. 

 

Diagnostic Model 

Diagnostic model using graphics from the data can be seen in Figure 4. 
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Figure 4. Diagnostic Plots SARIMA (1, 1, 0)(0, 0, 1)12 

 

It can be seen from the model diagnostic results in Figure 4, the SARIMA 

(1, 1, 0)(0, 0, 1)12 model is a good model, from the ACF plot it can be seen that the residual is 

already a white noise model, indicated by the absence of lag (≥ 1) outside the significance 

band, also the p-value of the Ljung-Box statistic is also above the 5% significance level line, 

which indicates that the null hypothesis of residuals not containing serial correlation is 

accepted. This can be further explained by residual testing using the Ljung-Box Test. 

a. White noise assumption 

A summary of the results of the Ljung - Box test on lines 12, 24, 36, and 48 of the Rstudio 

output can be seen in Table 4: 

Table 4. p-value of  Ljung-Box Test 

 lag p-value Independency of Residuals 

SARIMA 

(𝟏, 𝟏, 𝟎)(𝟎, 𝟎, 𝟏)𝟏𝟐 

12 

24 

36 

48 

0,7175 

0,773 

0,7341 

0,7954 

independence 

independence 

independence 

independence 

 

Based on Table 4, the SARIMA model (1, 1, 0)(0, 0, 1)12 fulfills the assumption of residual 

independence at lags 12, 24, 36, and 48. It can be concluded that it failed to reject 𝐻0 because 

the p-value of  Ljung-Box  is more than α ( α=0.05). 

b. Normal Distribution Assumption 

The next stage is after the assumption of white noise is met, then we do the residual normal 

distribution test. Checking the normality of the residuals visually is shown through the residual 

probability plot shown in figure 4, especially in the QQ-norm Standard residuals plot, it can 

be seen that most of the residuals spread around the diagonal line and follow the direction of 

the diagonal line, but there are two points that spread far from the diagonal line and causes the 

residuals to not have a normal distribution. This can be further explained through the 

Kolmogrov-Smirnov test. A summary of the results of the Kolmogrov-Smirnov test can be 

seen in table 5. 

Table 5. Kolmogrov-Smirnov test 

Kolmogrov-Smirnov test  

D 0,10802 

p-value 0,001541 

 

Based on table 5, the SARIMA model (1, 1, 0)(0, 0, 1)12 does not meet the residual 

normality assumption because it rejects 𝐻0 or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 (𝛼 = 0.05), it can be concluded 

that the residuals are not normally distributed. This can be ignored and continued at the next 

stage, because the residual normality test is not as important as the white noise test (Rosadi, 

2014). 
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Forecasting 

The following are the results of forecasting the electrical energy needs of the household 

sector for the 12 future periods shown in Table 3, using the SARIMA model (1, 1, 0)(0, 0, 1)12 

with a value of ∅1 =-0,5204, 𝛩1 = 0,1813. The form of the SARIMA (1, 1, 0)(0, 0, 1)12 

model is expanded as follows: 

     ∅𝑝(𝐵)𝛷𝑃(𝐵)𝑆(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑍̇𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑆)𝑎𝑡  

     ∅1(𝐵)(𝛷0)(𝐵)12(1 − 𝐵)1(1 − 𝐵12)0𝑍̇𝑡 = 𝜃0(𝐵)𝛩1(𝐵12)𝑎𝑡  

     ∅1(𝐵)(1 − 𝐵)1𝑍̇𝑡 = 𝛩1(𝐵12)𝑎𝑡  

     (1 − ∅1𝐵)(1 − 𝐵)𝑍̇𝑡 = (1 − 𝛩1𝐵12)𝑎𝑡  

     (1 − 𝐵 − ∅1𝐵 + ∅1𝐵2)𝑍̇𝑡 = (1 − 𝛩1𝐵12)𝑎𝑡  

 𝑍̇𝑡 − 𝐵𝑍̇𝑡 − ∅1𝐵𝑍̇𝑡 + ∅1𝐵2𝑍̇𝑡 = 𝑎𝑡 − 𝛩1𝐵12𝑎𝑡  

 𝑍̇𝑡 − 𝑍̇𝑡−1 − ∅1𝑍̇𝑡−1 + ∅1𝑍̇𝑡−2 = 𝑎𝑡 − 𝛩1𝑎𝑡−12  

     𝑍̇𝑡 = 𝑍̇𝑡−1 + ∅1𝑍̇𝑡−1 − ∅1𝑍̇𝑡−2 + 𝑎𝑡 − 𝛩1𝑎𝑡−12  

     𝑍𝑡̇ = (1 + ∅1)𝑍̇𝑡−1 − ∅1𝑍̇𝑡−2 + 𝑎𝑡 + 𝛩1𝑎𝑡−12  

     𝑍̇𝑡 = (1 + 0,5204)𝑍̇𝑡−1 + 0,5204𝑍̇𝑡−2 + 𝑎𝑡 + 0,1813𝑎𝑡−12 With 𝑎𝑡~𝑁(0, 𝜎𝑎), 𝜎𝑎
2 =

8.766 × 1010 and 𝑍𝑡̇ = 𝑍𝑡 − 𝑍𝑡−1. 

 

Table 6. Forecasts. The demand for Electrical Energy in the ULP Manokwari Kota 

Household Sector January 2023- December 2023 

Month Prediction Results Lo 80 Hi 80 Lo 95 Hi 95 

January 2023 7.293.715 6.996.044 7.591.386 6.698.373 7.889.057 

February 2023 7.274.147 6.944.539 7.603.756 6.614.930 7.933.364 

March 2023 7.382.270 7.023.556 7.740.983 6.664.843 8.099.697 

april 2023 7.424.495 7.038.867 7.810.123 6.653.239 8.195.751 

may 2023 7.417.191 7.006.408 7.827.974 6.595.625 8.238.757 

June 2023 7.422.706 6.988.222 7.857.189 6.553.738 8.291.673 

July 2023 7.400.869 6.943.912 7.857.826 6.486.955 8.314.783 

August 2023 7.402.529 6.924.153 7.880.905 6.445.777 8.359.280 

september 2023 7.408.057 6.909.181 7.906.933 6.410.306 8.405.808 

October 2023 7.466.918 6.948.352 7.985.484 6.429.786 8.504.049 

November 2023 7.428.624 6.891.088 7.966.159 6.353.553 8.503.694 

december 2023 7.481.067 6.925.209 8.036.924 6.369.351 8.592.782 

where,  

Hi 80 means Upper bound with 80% confidence interval; 

Lo 80 means Lower bound with 80% confidence interval; 

Hi 95 means Upper bound with 95% confidence interval; 

Lo 95 means Lower bound with 95% confidence interval. 

 

Based on Table 6, The lowest demand occurred in February 2023 and the highest is in 

December 2023, i.e., 7.274.147 kWh and 7.481.067 kWh, respectively. The plot of forecasting 

the energy needs of the electricity for the months January 2023 to December 2023 can be seen 

in Figure 5. 
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Figure 5. Forecasting Results of Electrical Energy Needs for the ULP Manokawari City 

Household Sector, January 2023 – December 2023 

 

Figure 5 shows that the results of forecasting the electricity demand for the household 

sector at PT. PLN (Persero) Manokwari Kota ULP for January 2023 to December 2023 is in 

the upper and lower bound intervals, with the 80% confidence interval in light gray and the 

95% confidence interval in dark grey. 

  

CONCLUSION 

Based on the application of the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) method, the study identified SARIMA (1,1,0)(0,0,1)1212 as the most effective 

model for forecasting household electricity demand in ULP Manokwari Kota, accurately 

capturing both seasonal and trend components. The model forecasts that electricity demand in 

2023 will fluctuate, with the lowest consumption anticipated in February at 7,274,147 kWh 

and the highest in December at 7,481,067 kWh, reflecting the influence of seasonal factors 

over the 12-month period. For future research, it is recommended to explore the integration of 

exogenous variables—such as weather patterns, economic indicators, or policy changes—into 

the forecasting model to further enhance prediction accuracy and provide deeper insights into 

the drivers of electricity demand in isolated power systems.  
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