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ABSTRACT

Fuel (BBM) is a strategic commodity that plays a crucial role in supporting various economic
sectors. PT XYZ, one of the fuel suppliers in Timor Leste, faces significant challenges in ensuring
a stable and timely supply. Issues such as demand fluctuations, lead time uncertainty, and limited
storage capacity often trigger stockout risks and additional operational costs, such as demurrage. In
2023, PT XYZ recorded two stockout events and two potential demurrage occurrences, resulting in
financial losses and missed sales opportunities. This study aims to analyze the current performance
of inventory and supply chain management for Gasoline RON 92 and Gasoil 0.05% Sulphur. This
study adopts a Monte Carlo simulation approach to model the variability of daily demand and lead
time more realistically. Three inventory control methods are evaluated: the Min-Max method, the
(s,Q) method, and the (s,S) method, across three demand scenarios: normal, +20% increase, and -
15% decrease. Key performance indicators analyzed include Economic Order Quantity (EOQ),
Safety Stock (SS), Reorder Point (ROP), total cost, and service level. The simulation was conducted
over 851 days to reflect actual operational conditions. The results show that the Min-Max method
performed best under the low-demand scenario, with the lowest total cost and no stockouts. The
(s,Q) method provided the best balance between ordering frequency, operational cost, and service
level in the normal demand scenario. Meanwhile, the (s,S) method demonstrated less efficient
performance under the high-demand scenario due to higher stockouts and increased holding costs.
These findings recommend adopting inventory control strategies that are adaptive to demand
dynamics and consider storage capacity limitations to enhance PT XYZ’s fuel supply chain
efficiency and resilience.
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INTRODUCTION

One of the big challenges in the fuel supply chain is overcoming stockout. Stockouts
not only have an impact on the company's operations, finances, and image, but can also cause
a domino effect on the economy at large (Govindan et al., 2018). On the other hand,
demurrage (costs incurred due to delays in the demolition process) also adds to the burden of
the company's operational costs (R. , D. G. G., & C. F. Patriarca, 2020). According to the
Energy Outlook 2023 report, fuel delivery delays due to supply chain inflexibility can increase
distribution costs by up to 10-15% per year, especially in regions with limited storage
infrastructure (International Energy Agency (IEA), 2023). To manage fluctuating demand and
ensure timely availability of fuel, careful and accurate planning is needed in the fuel supply
chain. The report also mentions that improving storage infrastructure and improving accuracy
in planning can reduce the risk of stockouts by up to 25%.

As one of the companies engaged in fuel supply, PT XYZ faces various significant
challenges related to fuel supply chain management. Fuel supply at PT XYZ depends on
supply from Singapore and Malaysia with special specifications of Gasoline RON 92 and
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Gasoil 0.05% Sulphur, which are different from the market in Indonesia (Chong, 2017). The
main challenge faced is the inflexibility of fuel delivery related to changes in the Accepted
Loading Date (ALD) and Accepted Discharge Date (ADD) schedules (Amico et al., n.d.; Teng,
2020). Every fuel delivery plan must be scheduled exactly one month in advance, and if there
is a change in the schedule, it is not easy to do, so it can cause significant delays. The demand
planning process is carried out regularly through Demand Planning meetings and Master
Program simulations between the Marketing Function and the Operations Planning Function
(SNOP) (Singh et al., n.d.; Verma et al., n.d.).

However, one of the obstacles that is often faced is the considerable deviation between
the results of demand planning and sales realization (Jeble et al., 2018). The limited capacity
of the storage tanks owned by PT XYZ also sometimes causes demurrage when tankers have
to wait for the unloading of the entire load (Pujawan et al., 2015; Rodrigues, A., et al. (2010),
n.d.). Then, the duration of delivery from Singapore to PT XYZ also takes quite a long time,
which is about 7 days under normal weather conditions. Thus, when the realization of sales
exceeds the plan, it has the potential to cause critical stock or even stockout, where the fuel
stock runs out before the next supply tanker arrives. On the other hand, when the realization
of sales is lower than planned, PT XYZ has the potential to bear the cost of demurrage due to
the delay in the dismantling of tankers that have arrived according to schedule. In 2023, PT
XYZ experienced two critical stock incidents (stockouts) and two instances of potential
demurrage that caused company losses.

In 2023, PT XYZ faced several major challenges related to mismatches between plans
and fuel sales realization, which had a direct impact on stock availability and demurrage risk.
Based on the data of Plan vs. Realization of Gasoil 0.05% Sulphur and Gasoline RON 92
products as shown in the Figure above, there are significant fluctuations in the fulfillment of
fuel demand throughout the year. During 2023, there were two critical stock conditions that
occurred in May and September. In May, the realization of Gasoline RON 92 reached 120%
of the planned amount, which caused critical stocks. The same thing also happened in
September, when sales realization reached 145% of the plan, so at that time there was also a
critical stock situation where the realization of fuel sales far exceeded the supply. As a result,
PT XYZ experienced distribution disruptions, namely not being able to meet customer needs
and losing sales opportunities to achieve revenue targets. This led to significant losses,
because the potential income that should have been obtained at that time could not be realized,
amounting to USD 242,000 (Mahendra et al., n.d.).

In addition to stockout problems, PT XYZ also faced two potential demurrage incidents
in the same year. This happened in June 2023 and July 2023, where the realization of fuel
sales was under plan. In June 2023, sales realization only reached 89% of the plan, and in July
2023 it only reached 92% of the plan. When the realization of sales is lower than planned, the
tanker that has been scheduled to arrive has to wait longer for unloading because the stock in
the storage tank is still full, so demurrage arises due to waiting ullage. This condition leads to
increased operational costs and losses for the company. This imbalance between sales
realization and sales planning shows that improvements in the planning process are urgently
needed. Improvements in planning methods, stock management, and increased flexibility in
the fuel supply chain will be key in reducing the risk of stockouts and demurrage in the future.
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One of the main challenges faced by PT XYZ in managing the fuel supply chain is the
inability to maintain sufficient inventory to meet demand at various distribution points. When
there is insufficient inventory, there is a stockout that hinders the smooth distribution of fuel
and has an impact on the cessation of energy supply that is urgently needed by vital sectors
such as transportation and industry. This condition not only causes financial losses for PT
XYZ but also has an impact on the wider community who are highly dependent on the
availability of fuel to support daily economic activities. The following are the inventory
conditions from the company for Gasoil 0.05% Sulphur and Gasoline RON 92 products.
Weaknesses in inventory management have led to two critical stock shortages in 2023, namely
in May and September. This condition emphasizes the importance of implementing a more
effective inventory control strategy to avoid repeated stock shortages.

In addition to stockout challenges, PT XYZ also faces significant demurrage costs due
to delays in the fuel loading and unloading process. The company's loss costs arising from
demurrage claims for the incident amounted to USD 19,825. Mismatches between planned
inventory volumes and actual requirements often lead to delays, where tankers have to wait at
the dock until ullage is available in the stockpile tank. This problem is caused by a lack of
flexibility in storage capacity and suboptimal scheduling in the supply process. Whenever
there is a delay in dismantling, the company has to bear additional costs in the form of
demurrage claims from suppliers, which ultimately increases the overall operational cost
burden.

The application of Monte Carlo simulations in this study is essential because it is able
to overcome the inherent uncertainty in the management of fuel inventories and distribution
processes. With this simulation method, the company can model various scenarios with
fluctuating operational variable conditions, thus helping PT XYZ in anticipating and
managing stockout and demurrage risks more effectively. Monte Carlo simulations provide a
probabilistic picture of events that could affect fuel availability, allowing companies to design
proactive supply chain strategies to reduce costs and ensure operational efficiency.

In the context of fuel inventory management, especially for RON 92 and Gasoil
products, the Monte Carlo simulation method has an important role because it can handle
uncertainties in stock control caused by demand variability and shipping constraints. Monte
Carlo simulations allow companies to simulate a variety of scenarios with random variables,
such as sudden changes in stock requirements or delays in the delivery process. With this
approach, companies can gain a deeper understanding of the probability of stockouts or
demurrage, as well as test various strategies to minimize these risks. In addition, this method
supports data-driven decision-making, which can improve inventory efficiency and reduce
reliance on excessive safety stocks, thus saving PT XYZ's operational costs overall. Not only
that, but the use of Monte Carlo can enable researchers to model broader uncertainties, both
in terms of demand variation and wait times, resulting in more accurate estimates of total costs
and service levels. R. Patriarca et al. (2022) revealed that Monte Carlo simulations can identify
the probability distribution of lead time, so that companies can plan more accurate safety
stocks based on the uncertainty of that shipment. Weraikat et al. (2019) stated that the use of
Monte Carlo for lead time variability can help reduce the risk of overstock or understock by
providing more adaptive predictions of demand fluctuations.
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A previous study by R. Patriarca et al. (2022) demonstrated the use of Monte Carlo
simulations in identifying the probability distribution of lead time in inventory management.
They suggested that these simulations could be used to improve safety stock planning by
accounting for uncertainties in shipment times. While their research highlights the potential
of Monte Carlo simulations for managing lead time variability, it does not specifically address
how these simulations can be used to reduce stockout risks in industries with highly volatile
demand, such as fuel supply chains. This gap is addressed by the present study, which applies
Monte Carlo simulations to model fuel stockouts and demurrage risks, offering more tailored
solutions for managing uncertainties in fuel inventory and distribution, where demand
fluctuation and supply delays are more pronounced (Castano & Amengual, 2020).

The primary goal of this research is to analyze the current performance of inventory and
supply chain management for Gasoline RON 92 and Gasoil 0.05% Sulphur, and to develop
an optimal inventory policy to reduce stockout and demurrage risks. The study’s practical
benefits include providing PT XYZ with strategies to minimize operational costs and enhance
the fuel supply's efficiency and stability. Academically, it contributes to the literature by
integrating Monte Carlo simulations into fuel supply chain management, offering new insights
for improving inventory control in energy logistics

METHOD

This study adopts a Monte Carlo simulation approach to model the variability of daily
demand and lead time more realistically. The research flowchart in Figure 1 provides a
comprehensive overview of the stages involved in the fuel supply chain management analysis
process at PT XYZ. This diagram integrates the Monte Carlo simulation approach with
inventory management methods—Economic Order Quantity (EOQ), Safety Stock (SS), and
Reorder Point (ROP)—to address demand fluctuations that often trigger stockout risks and
demurrage costs (Banthao et al., n.d.).

The methodology begins by quantifying historical demand patterns and lead time
variability for Gasoline RON 92 and Gasoil 0.05% Sulphur. Using probabilistic distributions
derived from real-world data, the Monte Carlo simulation generates thousands of potential
scenarios to evaluate the performance of three inventory control strategies: the Min-Max
method, the (s,Q) method, and the (s,S) method (Waller et al., 2013). These strategies are tested
under three demand scenarios: normal, +20% increase, and -15% decrease. Key metrics such as
total costs (holding, ordering, and demurrage), service levels, and stockout frequencies are
analyzed to identify optimal policies.

The flowchart emphasizes iterative refinement, where simulation outcomes inform
adjustments to safety stock levels, reorder points, and order quantities. By aligning inventory
decisions with probabilistic demand and supply forecasts (Cedolin et al., n.d.), PT XYZ can
mitigate risks associated with storage limitations and volatile market conditions. This approach
not only enhances operational resilience but also supports data-driven decision-making to
balance cost efficiency and service reliability in Timor Leste’s fuel supply chain (Kurniawan et
al., 2022).

The stages in the diagram begin with identifying the company’s challenges and culminate
in implementing an optimal inventory management strategy. Each stage addresses specific fuel
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supply chain constraints, from resolving mismatches between planning and demand realization
to adjusting storage capacity to prevent excessive operational costs.

During the data collection stage, relevant information—including monthly demand, lead
time, storage costs, and booking costs—is gathered to establish an accurate foundation for
calculating Economic Order Quantity (EOQ), Safety Stock (SS), and Reorder Point (ROP).
These calculations are then tested via Monte Carlo simulations to model various demand
fluctuation scenarios. This simulation phase evaluates the sensitivity of forecasting and stock
management to demand variability, ensuring strategies are robustly prepared for uncertainty.
The final stage involves implementing and evaluating the derived strategy, enabling PT XYZ to
achieve efficient fuel stock management and distribution.

The study utilizes secondary data for inventory management analysis and supply chain
optimization. Below is a detailed breakdown of the data types and sources:

Table 1. Data Types and Their Sources

Yes Data Type Data Source
1 Historical Data on Fuel Demand Sales, distribution, internal reports of PT XYZ
2 Data Lead Time Logistics department, transportation management
system (TMS)
PT XYZ INVENTORY MANAGEMENT SYSTEM
3 Inventory Data (Fuel Stocks) (ERP, IMS)
4 Operational Cost and Demurrage Financial statements, logistics and finance
Data department of PT XYZ
5 Fuel Price and Cost Data Procurement Department of PT XYZ

This stage involves analyzing data to optimize PT XYZ’s fuel supply chain management
by reducing stockout risks and demurrage costs caused by unpredictable demand fluctuations.
Key steps include calculating Economic Order Quantity (EOQ), Safety Stock (SS), and Reorder
Point (ROP) to establish inventory benchmarks, followed by Monte Carlo simulations to test
strategy resilience against demand variability. These simulations model diverse scenarios—
such as sudden demand spikes or drops—to identify vulnerabilities in current protocols,
enabling PT XYZ to refine order quantities, safety buffers, and replenishment schedules. By
integrating probabilistic forecasting with inventory optimization, the analysis provides
actionable insights to balance cost efficiency and service reliability while mitigating
operational risks.

RESULTH AND DISCUSSION
Company Description

PT XYZ gets regular fuel supply from Singapore for Gasoline RON 92 and Gasoil 0.05%
S products using tanker mode. However, in emergency conditions, PT XYZ gets alternative
supplies from Indonesia, namely from Kupang and Atapupu using tank car mode. Fuel
imported from Singapore is stored in the storage tank of the PT XYZ Fuel Terminal. From the
data on the realization of fuel supply using the tanker mode above, the smallest total supply
volume (Gasoline RON 92 and Gasoil 0.05% S) per shipment is 3,156,747 liters and the largest
supply volume per shipment is 5,500,971 liters. The fuel is then stored in storage tanks, then
then distributed to consumers, both owned petrol stations, private petrol stations and industrial
consumers. The distribution of fuel to consumers is mostly carried out using tank car modes

1555 Vol. 4, No. 7, June 2025



Inventory Management of Gasoline Ron 92 and Gasoil 0,05% Sulphur with Monte Carlo Simulation

for petrol station and small industry consumers, but for large industrial consumers it is carried
out using barge modes. The distribution of Gasoline RON 92 fuel is the lowest at 1,958,000
liters per month and the highest at 3,729,880 liters per month. As for the distribution of Gasoil
0.05% S fuel, the lowest is at 1,219,200 liters per month and the highest at 3,348,890 liters per
month.

Simulated Demand Scenarios

After determining the basic parameters of the inventory system such as EOQ, Safety
Stock, and Reorder Point (ROP), the next stage is to conduct a monte carlo simulation of the
implementation of inventory control strategies in various demand conditions. This simulation
aims to evaluate the performance of three stock control methods, namely Min-Max, (s,Q), and
(s,S), in maintaining the availability of RON 92 Gasoline and 0.05% S Gasoil fuel at PT XYZ's
storage facility. Each method was tested in three different scenarios, namely the normal
demand scenario (based on historical actual data), the high demand scenario (+20% of the
average daily demand), and the low demand scenario (—15% of the average daily demand).
This approach is carried out to test the sensitivity of each method to demand fluctuations that
may occur in fuel distribution operations. This simulation will be carried out to project a total
of 852 days based on historical data and then the results will be analyzed.

In the monte Carlo simulation, each method will be evaluated based on a number of key
performance indicators, namely the number of days of stockout, the number of orders placed,
the average daily stock, and the total cost, which consists of the cost of ordering and storage
costs. The simulation results will be compared between methods and between scenarios for
each fuel product, in order to identify the most effective and efficient method in answering the
dynamics of needs in the field.

It should be emphasized that the data presented in this report, particularly in the form of
daily simulation tables, are only a snapshot of the simulation results for the first 30 days as an
initial representation of the inventory system's response to each scenario and control method.
This view aims to provide a more concrete and easy-to-understand picture of the reorder flow,
stock changes, and the potential for stockouts during daily operational periods.

Nevertheless, in practice, a thorough inventory system simulation is carried out for a
long-term projection of 852 days based on actual demand data obtained from 2022 to 2024.
The entire evaluation of the method's performance—including the total number of orders, the
number of stockout days, the average daily stock, and the calculation of the total cost—was
generated from the full simulation process over the course of 852 days.

Scenario 1: Normal Demand

The first scenario in this simulation uses actual historical data from 2022 to 2024 as a
representation of normal demand conditions. This data reflects the daily distribution pattern of
Gasoline RON 92 and Gasoil 0.05% S as occurred in PT XYZ's real operations, without any
modifications or projections of increasing or decreasing demand. The purpose of this scenario
is to evaluate the performance of each inventory control method under stable demand
conditions and reflect the day-to-day operational conditions. Simulations were carried out to
determine the level of cost efficiency, frequency of orders, risk of stock shortages, and average
inventory availability under basic conditions before being tested in extreme scenarios. The full
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simulation results that will be shown in this report are only for Gasoline RON 92 products
while Gasoil 0.05% S can be seen in Appendix 6. The results of the comparison of the two
products will be presented in the next section. The following are the simulation results for
scenario 1 with the min-max method.

Simulation of the Min-Max (s,S) method for 30 days under normal demand conditions
shows that the stock control mechanism works dynamically based on daily demand
fluctuations. At the beginning of the simulation, the initial stock of 1,401,470 liters experienced
a gradual decline as daily demand was met. From day 1 to day 12, the system is still able to
meet demand without experiencing stockouts. However, since the 13th day, the stock has
started to touch the reorder point (ROP) level, and on the 17th day the stock has touched a
critical point.

New orders do not come immediately due to lead time. This causes stockout to occur
from day 17 to day 24, indicated by the Stockout column with a value of 1. This signifies that
during that period the demand cannot be met due to depletion of stock or insufficient supply.
The new order was finally shipped and received on the 25th day with a volume of 2,600,000
liters, which is the maximum level (S) value of the Min-Max method. Once the supply came
in, the stock increased significantly and was again able to meet daily demand for the remainder
of the simulation period without experiencing further stockouts.

Method simulation (s,Q) for 30 days with normal daily demand data shows the dynamics
of stock management that depends on the reorder point/s trigger. At the beginning of the
simulation period, the initial stock of 1,401,470 liters gradually decreased in line with the
fulfillment of fluctuating daily demand.

The system uses logic (s,Q), which triggers a fixed amount of reorders (Q) whenever the
stock touches or is below the limit of the Reorder Point(s). In this simulation, the order is placed
on the 1st day, but because this method uses a lead time that resembles real conditions, the
order does not go directly into stock. It is noted that orders placed on the first day are only
received on the 30th day, as shown in the "Incoming Orders" column which is worth 2,600,000
liters, and the "Incoming Order Day" column shows the number 56 (meaning that it was
previously calculated to enter after a certain lead time). Then the following are the results for
scenario 1 normal with the (s,S) method.

Table 2. Si mulation of Normal Scenarios with Method (s,S)

Inco Order

Vovews THEOUROLNON o O S
" In Status
| 6434;36,810 0 14(‘)&:270, 133721626,6 YA 28 ACTIVE NO
) 80971(;,255 0 1336721626, 125671156,3 NO } ACTIVE NO
3 3939661,569 0 1253671156, 121 %7159,8 NO } ACTIVE NO
4 72299_7;’127 0 12;%7159, 1144;4;66,6 NO } ACTIVE NO
5 173%)772,00 0 1 114;4;66, 971 (324,67 NO i} ACTIVE NO

1557 Vol. 4, No. 7, June 2025



Inventory Management of Gasoline Ron 92 and Gasoil 0,05% Sulphur with Monte Carlo Simulation

Inco Order —\ five
Tovemm TESed ek o oo O
" In Status
6 233 13,667 0 97 17(;?‘4,6 947 1 79 6,00 NO ) ACTIVE NO
7 13386917,13 0 94?)1796,0 81388;8,86 NO ) ACTIVE NO
< 0 0 81?%8828,8 81388;8,86 NO i ACTIVE NO
9 949373,907 0 81?%8828,8 71891412,96 NO i ACTIVE NO
10 12986884,29 0 718691412,9 589(4)‘28,66 NO ) ACTIVE NO
1 1288697,77 0 5896(‘)‘538,6 460 ; 20,88 NO ) ACTIVE NO
12 1224;%0,21 0 46(2)%20,8 337;650,66 NO i ACTIVE NO
13 398%2,230 0 3376;650,6 29797594,43 NO ) ACTIVE NO
4 352173,022 0 297397594,4 21275157,41 NO ) ACTIVE NO
|5 64333351 0 2127174 212074,08 NO i ACTIVE NO
19 155 2
16 12376918,28 0 2122(3)274,0 882;56,795 NO ) ACTIVE NO
17 1067;31,81 0 8825;56,79 0 NO - ACTIVE  YES
8 803%26,608 0 0 0 NO - ACTIVE ~ YFS
19 61416 22,299 0 0 0 NO - ACTIVE ~ YES
20 626752;,196 0 0 0 NO - ACTIVE ~ YES
)1 1259;294,05 0 0 0 NO - ACTIVE ~ YES
” 100%727,04 0 0 0 NO - ACTIVE ~ YES
3 0 0 0 0 NO - ACTIVE NO
9 125(())669,54 0 0 0 NO - ACTIVE ~ YES
s | 133135,51 0 0 0 NO - ACTIVE ~ YES
Y 0 0 0 0 NO - ACTIVE NO
27 530219;,650 0 0 0 NO - ACTIVE  YES
hg 14737941 2600 o 0000 24526205 YA 49 ACTIVE NO
98 000 8
29 19472792,90 0 24552520, 22577%47,6 NO ) ACTIVE NO
30 5302569,687 0 2256775;47, 22049820,9 NO ) ACTIVE NO

A 30-day simulation method (s,S) illustrates how the inventory control system works
when demand varies daily. In this method, orders are placed when the stock touches or is below
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the reorder point (ROP), and the order volume is intended to replenish inventory until it reaches
the maximum level (S). At the beginning of the simulation, the initial stock of 1,401,470 liters
continued to decline in response to the meeting of daily demand. When the stock is below the
ROP, the system triggers a reorder on the 1st day. However, because the system applies lead
times that resemble real conditions in the field—that is, lead times that can vary due to
operational and logistical factors—orders are not immediately accepted. Based on this
simulation, orders sent on day 1 only come in on day 28. During the waiting period for the
arrival of orders, the stock continued to decline and reached the point of exhaustion on the 17th
day, which led to 11 consecutive days of stockouts (17th to 27th days). The system's inability
to meet demand in that period is illustrated by the "Stockout?" column marked YES.
Scenario 2: High Demand (+20%)

The second scenario was designed to simulate operational conditions at a time of 20%
increase in demand compared to the actual average daily demand. This scenario is designed to
test the resilience and responsiveness of the inventory control system to significant spikes in
demand, which can occur due to various factors such as seasonal increases in consumption,
supply disruptions in other regions, or government policies that encourage the consumption of
certain fuels. By increasing the demand parameters by 20%, this simulation is an important
tool to assess how effective the Min-Max, (s,Q), and (s,S) methods are in maintaining stock
availability levels and preventing stockouts under high load conditions.

Table 3. Simulation of +20% Demand Scenario with Min-Max Method

Day Demand Initial stock  Incoming Order Final stock Stockout
1 77212,57 1401470 0 1324258 0
2 97164,31 1324258 0 1227094 0
3 47275,88 1227094 0 1179818 0
4 86751,75 1179818 0 1093066 0
5 208046,4 1093066 0 885019,5 0
6 27982,4 885019,5 0 857037,1 0
7 160676,6 857037,1 0 696360,6 0
8 0 696360,6 0 696360,6 0
9 113923,1 696360,6 0 582437,5 0
10 155861,2 582437.,5 0 426576,3 0
11 154677,3 426576,3 0 271899 0
12 146880,3 271899 0 125018,7 0
13 47767,48 125018,7 0 77251,24 0
14 102284.,4 77251,24 0 0 1
15 772,0002 0 0 0 1
16 148557.9 0 0 0 1
17 128138,2 0 0 0 1
18 96423,13 0 0 0 1
19 73694,76 0 0 0 1
20 75213,84 0 0 0 1
21 151108.,9 0 0 0 1
22 1211724 0 0 0 1
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Day Demand Initial stock  Incoming Order  Final stock Stockout
23 0 0 0 0 1
24 150083,4 0 0 0 1
25 136074,6 0 2600000 2463925 0
26 0 2463925 0 2463925 0
27 63635,58 2463925 0 2400290 0
28 176855,3 2400290 0 2223435 0
29 233727,5 2223435 0 1989707 0
30 63632,03 1989707 0 1926075 0

A 30-day simulation using the Min-Max method (s,S) under conditions of increased
demand by 20% showed that the stock control system faced greater pressure than normal
conditions. At the beginning of the simulation, the initial stock of 1,401,470 liters began to
dwindle rapidly due to the relatively high demand in the early days, as seen on day 5 which
recorded the highest daily demand of 208,046 liters.

The Min-Max system works with a reorder mechanism when the stock touches the
reorder point (Reorder Point/s), with the quantity replenished until it reaches the maximum
level (S). In this simulation, the system detects that the stock has been below the order point
on day 1, so the order is shipped immediately. However, because the simulation uses a lead
time that resembles real conditions (i.e. variable lead time), a new order entered the system on
the 25th day of 2,600,000 liters. As a result of this waiting time, there was a long stockout,
namely for 13 consecutive days from the 13th day to the 25th. The period shows that the system
cannot meet demand due to delays in stock fulfillment. Column "Stockout"

Table 4. Simulation of +20% Demand Scenario with Method (s,Q)

Incomi Order Active
Da Initial Final Sent Day Stoc
Demand ng : Order
y Order Stock Stock order Coming Status kout
In
77212,57 1401470 1324257 NO
1 43 0 436 364 YES 23 AKTIF
97164,30 1324257 1227093 NO
2 623 0 864 557 NO - AKTIF
47275,88 1227093 1179817 NO NO
3 353 0 557 674 - AKTIF
86751,75 1179817 1093065 NO NO
4 349 0 ,674 ,92 ) AKTIF
208046,4 1093065 885019, NO NO
> 008 0 ,92 5196 ) AKTIF
27982.,40 885019, 857037, NO NO
6 09 0 5196 1187 - ACTIVE
7 160676,5 0 857037, 696360, NO ACTIVE NO
633 1187 5554 )
3 0 0 696360, 696360, NO i ACTIVE NO
5554 5554
9 113923,0 0 696360, 582437, NO i ACTIVE NO
893 5554 4661
10 155861,1 0 582437, 426576, NO ACTIVE NO
561 4661 31 )
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Incomi Order Active
Da Initial Final Sent Day Stoc
Demand ng : Order
y Order Stock Stock order Coming Status kout
In
1 154677,3 0 426576, 271898, NO i ACTIVE NO
312 31 9788
12 146880,2 0 271898, 125018, NO i ACTIVE NO
638 9788 715
13 4776747 0 125018,  77251,2 NO ACTIVE NO
676 715 3826 )
14 102284.,4 0 77251,2 0 NO i ACTIVE  YES
269 3826
15 77 21 2(3;)02 0 0 0 NO i ACTIVE  YES
16 145;53537,9 0 0 0 NO i ACTIVE  YES
17 122;12%8,1 0 0 0 NO i ACTIVE  YES
13 964(1)263 ,13 0 0 0 NO i ACTIVE  YES
19 73699;;,75 0 0 0 NO i ACTIVE  YES
20 7525;33,83 0 0 0 NO i ACTIVE  YES
71 151108,8 0 0 0 NO i ACTIVE  YES
646
2 121172,4 0 0 0 NO i ACTIVE  YES
483
23 o %% 2600000 2600000 YEs 45 ACTIVE - NO
150083.4 2449916 ACTIVE NO
24 438 0 2600000 551 NO -
25 136074,6 0 2449916 2313841 NO i ACTIVE NO
136 ,551 ,938
2 0 0 2313841 2313841 NO ACTIVE NO
,938 ,938 i
27 63635,58 0 2313841 2250206 NO ACTIVE NO
02 ,938 ,357 j
23 176855,3 0 2250206 2073351 NO ACTIVE NO
038 ,357 ,054 )
29 2337274 0 2073351 1839623 NO i ACTIVE NO
835 ,054 ,57
30 63632,02 0 1839623 1775991 NO i ACTIVE NO
51 ,57 ,545

A 30-day method (s,Q) simulation at a demand increase of 20% showed how the fixed
order (Q) system responded to the increase in the daily consumption load. At the beginning of
the period, the system started with a stock of 1,401,470 liters, which began to gradually decline
due to the fulfillment of higher-than-normal demand, as seen on the 5th and 6th days with the
demand exceeding 200,000 liters per day.

The (s,Q) system works by logic: orders of a fixed amount Q are sent whenever the stock
touches or is below the reorder point (ROP). In this simulation, the order trigger occurs on day
1, as recorded in the "Order Shipped?" column which is YES, and the system sets the order day
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to be entered on day 23. This reflects the use of lead time that resembles real conditions, where
the time lag between an order and the arrival of a supply can be variable.

However, due to the long lead time, there was a stockout that started on the 14th day and
lasted until the 22nd day, a total of 9 consecutive stockout days. This can be seen from the
"Stockout?" column which is valued YES in that period, indicating the system's inability to
meet demand due to delays in incoming orders.

Table 5. Simulation of +20% Demand Scenario with Method (s,S)

Day  Demand Initial stock Incoming Order  Final stock  Stockout Day

1 133,733.56  2,500,000.00 - 2,366,266.44  FALSE TRUE
2 93,550.22  2,366,266.44 - 2,272,7116.22  FALSE FALSE
3 143,287.67  2,272,716.22 - 2,129,428.54 FALSE FALSE
4 198,681.90  2,129,428.54 - 1,930,746.65 FALSE FALSE
5 87,482.07 1,930,746.65 - 1,843,264.57 FALSE FALSE
6 87,483.11 1,843,264.57 - 1,755,781.46  FALSE FALSE
7 202,237.32 1,755,781.46 - 1,553,544.14  FALSE FALSE
8 150,865.57 1,553,544.14 - 1,402,678.57 FALSE FALSE
9 72,590.25 1,402,678.57 - 1,330,088.31 FALSE FALSE
10 136,634.83 1,330,088.31 - 1,193,453.49 FALSE FALSE
11 72,973.54 1,193,453.49 - 1,120,479.95 FALSE FALSE
12 72,827.22 1,120,479.95 - 1,047,652.72  FALSE FALSE
13 117,612.10 1,047,652.72 - 930,040.63  FALSE FALSE
14 - 18,778.11 930,040.63 - 948,818.74  FALSE FALSE
15 - 6,857.98 948,818.74 - 955,676.72  FALSE FALSE
16 66,716.76 955,676.72 - 888,959.96  FALSE FALSE
17 38,205.01 888,959.96 - 850,754.95  FALSE FALSE
18 122,186.51 850,754.95 - 728,568.43  FALSE FALSE
19 44,837.51 728,568.43 - 683,730.92  FALSE FALSE
20 12,925.18 683,730.92 - 670,805.74  FALSE FALSE
21 195,050.65 670,805.74 - 475,755.09 FALSE FALSE
22 88,012.20 475,755.09 - 387,742.89  FALSE FALSE
23 106,573.39 387,742.89 - 281,169.50  FALSE FALSE
24 12,137.66 281,169.50 - 269,031.84  FALSE FALSE
25 67,849.83 269,031.84 - 201,182.01  FALSE FALSE
26 109,319.51 534,915.57 333,733.56 425,596.06  FALSE TRUE
27 29,461.67 425,596.06 - 396,13439  FALSE FALSE
28 126,075.30 396,134.39 - 270,059.09  FALSE FALSE
29 64,289.78 270,059.09 - 205,769.31  FALSE FALSE
30 83,840.74 205,769.31 - 121,928.56  FALSE FALSE

A 30-day simulation of the method (s,S) or Min-Max under conditions of increased
demand by 20% shows that the inventory control system is able to maintain stock availability
quite effectively, despite higher than usual demand pressures.

At the beginning of the period, the system started with a stock of 1,401,470 liters, which
began to gradually decrease as the daily demand was met with relatively high demand—
especially on day 5 which recorded a demand of more than 208,000 liters. When the stock
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touches the reorder point (ROP), the system automatically triggers a reorder on day 1, as
indicated in the "Order Shipped?" column which is YES, and the system schedules incoming
orders on day 18. It reflects the application of lead time that resembles real conditions, which
takes into account variations in the time of arrival of supplies based on field conditions.

The system managed to maintain stock availability until the 14th day, but started
experiencing stockouts for 3 consecutive days (15th to 17th day), marked by a "Stockout?"
column with a value of YES. This happens because the stock is completely out of stock ahead
of the order coming in. An order of 2,600,000 liters finally came in on the 18th day,
replenishing stocks to 2,503,576 liters and restoring fuel availability.

Scenario 3: Low Demand (—15%)

The third scenario in this simulation is designed to represent operational conditions when
there is a 15% decrease in demand from the actual average demand. Just like the previous
scenarios, the simulated inventory control methods include Min-Max, (s,Q), and (s,S), using
pre-calculated EOQ, Safety Stock, and ROP parameters. The difference lies in the adjusted
daily demand volume dropping by 15% to test how the system responds to oversupply or
potential overstock conditions.

The presentation structure in this section follows the previous pattern, which is to show
the first 30 days of simulation footage for each method. However, given that the characteristics
of low demand conditions are more relevant to be analyzed as a whole to cost efficiency and
overstock risk, the discussion of the results of this scenario will be presented comparatively in
the next section, along with the evaluation between methods and scenarios.

Table 6. Demand Scenario Simulation -15% with Min-Max Method

Day Demand Initial stock Incoming Order Final stock Stockout
1 54.692,24 1.401.470,44 0 1.346.778,20 0
2 68.824,72 1.346.778,20 0 1.277.953,48 0
3 33.487,08 1.277.953,48 0 1.244.466,40 0
4 61.449,16 1.244.466,40 0 1.183.017,24 0
5 147.366,20 1.183.017,24 0 1.035.651,04 0
6 19.820,87 1.035.651,04 0 1.015.830,17 0
7 113.812,57 1.015.830,17 0 902.017,60 0
8 - 902.017,60 0 902.017,60 0
9 80.695,52 902.017,60 0 821.322,08 0
10 110.401,65 821.322,08 0 710.920,43 0
11 109.563,11 710.920,43 0 601.357,32 0
12 104.040,19 601.357,32 0 497.317,13 0
13 33.835,30 497.317,13 0 463.481,84 0
14 72.451,47 463.481,84 0 391.030,37 0
15 546,83 391.030,37 0 390.483,54 0
16 105.228,54 390.483,54 0 285.254,99 0
17 90.764,55 285.254,99 0 194.490,45 0
18 68.299,72 194.490,45 0 126.190,73 0
19 52.200,45 126.190,73 0 73.990,27 0
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Day Demand Initial stock Incoming Order Final stock Stockout
20 53.276,47 73.990,27 0 20.713,81 0
21 107.035,45 20.713,81 0 - 1
22 85.830,48 - 0 - 1
23 - - 0 - 1
24 106.309,11 - 0 - 1
25 96.386,18 - 2600000 2.503.613,82 0
26 - 2.503.613,82 0 2.503.613,82 0
27 45.075,20 2.503.613,82 0 2.458.538,61 0
28 125.272,51 2.458.538,61 0 2.333.266,11 0
29 165.556,97 2.333.266,11 0 2.167.709,14 0
30 45.072,68 2.167.709,14 0 2.122.636,45 0

Simulation of a low demand scenario of —15% conducted using the Min-Max method
over a 30-day period shows that this inventory control policy is able to maintain overall stock
availability well, but there are still some critical points that require attention. At the beginning
of the simulation, the inventory level was in adequate condition with an initial stock of
1,401,470 liters. As the simulation progresses, the stock gradually decreases according to the
daily demand pattern. This decrease in stock does not immediately trigger a reorder, because
the stock is still above the minimum reorder point/s.

However, from the 13th to the 24th day, there was a stockout condition which was
characterized by the absence of stock left to meet daily demand. This is due to delays in
responding to stock declines until they reach the reorder point, while delivery lead times have
not been able to compensate for urgent needs. In total, there are 12 consecutive stockout days,
which indicates that even though demand is falling, order triggers are too slow in responding
to consumption realization. The recovery of new stocks occurred on the 25th day, with
incoming orders of 2,600,000 liters, which is the maximum allowable capacity of tanks. After
this replenishment, the rest of the simulation runs with stock in safe condition, without any
additional stockouts.

Table 7. Simulation of a -15% Demand Scenario with the Method (s,Q)

Da Demand Incoming Initial Ending Shipped  Day of Incoming  Stock
y Order Stock Stock Order Order out
NO
1 1.401.470, 1.346.778, YES 29
54.692,24 - 44 20
NO
2 1.346.778, 1.277.953, NO -
68.824,72 - 20 48
NO NO
3 1.277.953, 1.244.466, -
33.487,08 - 48 40
NO NO
4 1.244.466, 1.183.017, -
61.449,16 - 40 24
NO NO
5 147.366,2 ) 1.183.017, 1.035.651, -
0 24 04
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Da Demand Incoming Initial Ending Shipped  Day of Incoming Stock
y Order Stock Stock Order Order out
NO NO
6 1.035.651, 1.015.830, -
19.820,87 - 04 17
NO NO
7 113.812,5 ) 1.015.830, 902.017,60 -
7 17
] NO NO
- - 902.017,60 902.017,60 i
9 NO i NO
80.695,52 - 902.017,60  821.322,08
NO NO
101 10'§01’6 - 821.322,08 710.920,43 i
NO NO
1 109'i63’1 - 710.920,43 601.357,32 i
NO NO
12 104'840’1 - 601.357,32 497.317,13 i
13 NO i NO
33.835,30 - 497.317,13  463.481,84
14 NO NO
72.451,47 - 463.481,84 391.030,37 i
15 NO NO
546,83 - 391.030,37 390.483,54 i
NO NO
1o 1052285 . 390.483,54  285.254,99 ]
17 NO NO
90.764,55 - 285.254,99  194.490,45 i
13 NO i NO
68.299,72 - 194.490,45 126.190,73
19 NO i NO
52.200,45 - 126.190,73  73.990,27
20 NO NO
53.276,47 - 73.990,27  20.713,81 i
NO YES
21 107.(5)35,4 ) 20.713.81 i -
NO YES
2 85.830,48 - - - i
3 ] ] ] NO . NO
NO YES
24 106.309,1 -
| - - -
NO YES
2> 96.386.18 ! ! ! )
26 ) ) ) i NO - NO
NO YES
2 45.075,20 - - - i
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Da Demand Incoming Initial Ending Shipped  Day of Incoming Stock
Yy Order Stock Stock Order Order out
NO YES
28 125.272,5 -
| - - -
NO
29  165.556,9 2.600.000,0 2.600.000, 2.434.443, YES 53
7 0 00 03
NO
30 45.072,68 ) 2.434.443, 2.389.370, NO -

03 35

Simulation of low demand scenario (—15%) using the method (s,Q) for 30 days showed
that the inventory control system was able to manage stock availability in a relatively stable
manner, with only two days of stockout, namely on the 22nd and 24th days. This indicates that
the method (s,Q) can still work effectively even under conditions of declining demand,
provided that the parameters of the order point(s) and the order quantity (Q) are precisely set.

At the beginning of the simulation, the system had an initial stock of 1,401,470 liters,
which gradually decreased with the pace of daily demand. The order point(s) in this scenario
is used as a reference to trigger a shipment when the stock is close to the minimum level. Orders
of 2,600,000 liters (maximum tank capacity limit) only occurred on the 25th day and were
received on the 29th day, following the actual lead time.

This delay in delivery causes stockouts that occur for two days before the order is
received. This shows that although the method (s,Q) has been quite efficient in terms of cost
and frequency of orders, there is a need for further evaluation of the determination of order
points in order to still take into account variations in demand and lead time to avoid supply
gaps. After the order came in on the 29th day, the system again had a large amount of inventory
of 2,434,443 liters and was able to serve the demand for the rest of the period without
experiencing any more vacancies.

Table 8. Demand Scenario Simulation -15% with (s,S) Method

Day Demand Incoming Order Initial Stock Ending Stock Shipped Order Day of Incoming Order Stockout

1 54.692,24 - 1.401.470,44 1.346.778,20 YES 30 NO
2 68.824,72 - 1.346.778,20 1.277.953,48 NO - NO
3 33.487,08 - 1.277.953,48 1.244.466,40 NO - NO
4 61.449,16 - 1.244.466,40 1.183.017,24 NO - NO
5 147.366,20 - 1.183.017,24 1.035.651,04 NO - NO
6 19.820,87 - 1.035.651,04 1.015.830,17 NO - NO
7 113.812,57 - 1.015.830,17 902.017,60 NO - NO
8 - - 902.017,60 902.017,60 NO - NO
9 80.695,52 - 902.017,60 821.322,08 NO - NO
10 110.401,65 - 821.322,08 710.920,43 NO - NO
11 109.563,11 - 710.920,43 601.357,32 NO - NO
12 104.040,19 - 601.357,32 497.317,13 NO - NO
13 33.83530 - 497.317,13 463.481,84 NO - NO
14 7245147 - 463.481,84 391.030,37 NO - NO
15 546,83 - 391.030,37 390.483,54 NO - NO
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Day Demand Incoming Order Initial Stock Ending Stock Shipped Order Day of Incoming Order Stockout
16 10522854 - 390.483,54 285.254,99 NO - NO
17 90.764,55 - 285.254,99 194.490,45 NO - NO
18 68.299,72 - 194.490,45 126.190,73 NO - NO
19 5220045 - 126.190,73 73.990,27 NO - NO
20 53.276,47 - 73.990,27 20.713,81 NO - NO
21 107.03545 - 20.713,81 - NO - YES
22 85.83048 - - - NO - YES
23 - - - - NO - NO
24 106.309,11 - - - NO - YES
25 96.386,18 - - - NO - YES
26 - - - - NO - NO
27 4507520 - - - NO - YES
28 12527251 - - - NO - YES
29 165.556,97 - - - NO - YES
30 45.072,68 2.600.000,00 2.600.000,00 2.554.927,32 YES 64 NO

Interpretation of Results

After simulating three inventory control methods, namely Min-Max, (s, Q), and (s, S), in

three demand conditions scenarios (normal, high, and low), the next stage is to compare and
interpret the results of all the approaches that have been tested. This comparison aims to gain
a more comprehensive understanding of the effectiveness and efficiency of each method in
maintaining stock availability, avoiding stockouts, and controlling inventory costs, both in
stable conditions and when facing fluctuations in demand.

The analysis will focus on a number of key performance indicators, such as the number
of days a stockout, the number of orders shipped, the average daily stock, and the total costs
incurred, which include the cost of ordering and storage costs. The results of the three methods
in various scenarios will be compared for each product, both Gasoline RON 92 and Gasoil
0.05% S, in order to identify the inventory control strategy that best suits the operational
dynamics and demand characteristics of each product. The following is a comparison of all
scenarios and methods for Gasoline RON 92 products.

Table 9. Comparison table

Prod Scenar Sent Days of Stockout
. Method Stockou Cost of saving Cost of order Total cost (IDR) percentag
uct io order ¢ e
Min- IDR IDR IDR
4 0,
Max 3 8 31.124.590.838,49 183.292.636.878,54 214.417.227.717,03 0.94%
Norma IDR IDR IDR 5
1 Q) 28 23 6.854.007.426,59 150.946.877.429,39 157.800.884.855,97 2,70%
Gaso IDR IDR IDR 0
line ©8) 34 22 6.157.925.035,10 183.292.636.878,54 189.450.561.913,64 2,59%
RON Min- IDR IDR IDR
. 4 0,
92 Dngh Max 3 33 7.591.227.198,03 183.292.636.878,54 190.883.864.076,57 3,88%
eman
IDR IDR IDR
d (5,Q) 31 107 12,57%
(+20% 5.446.628.420,78 167.119.757.153,96 172.566.385.574,74
IDR IDR IDR 0
) ©8) 37 70 5.306.241.968,34 199.465.516.603,12 204.771.758.571,45 8:23%
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Prod Scenar Sent Days of Stockout
uct io Method order Stoctkou Cost of saving Cost of order Total cost (IDR) perczntag
Low 11\\/[/11;); 34 37 7.098.;12(5289,90 183.2921.](?311.878,54 190.3911.14?(;1{3.168,44 4,35%
Dflr?-an Q) 25 6 8.373.3(?13596,70 134.7731.]9);1(7.704,81 143. 1471.17)51?).301 51 0.71%
o ©5) 36 13 6.950.;]935{142,75 194.0741.]5)51{6.694,93 201 .0251.?57.837,67 1.53%
1\1\//1121)4_ 34 s 5.399.;](?;.{783,46 183.2921.]6331{6.878,54 188.6921.]:4{{6.662,00 1351%
Noima Q) 33 i 3.974. 1119)251 1,04 177.90 11.12711.970,35 181 .8751.183;1{3.481,39 20,09%
©8) 32 216 3.395.5110)(5776,41 172.5101.]7);1(7.062,16 175.9061.12);1{7.838,57 25,38%
GL;SO D}iir;gl:n 1\1\//1121)4_ 34 163 4.586%22081,83 183.292;5326.878,54 187.879;512).960,37 19,15%
(:,105 (+2do% Q) 33 300 3.010.929.740,34 177.901.676.970,35 180.912.606.710,69 35,25%
v ) ©5) 34 21 4.069‘39)2}?295,99 183.2921.?3]{6.878,54 187.3621.11);9. 174,53 24,79%
Low 1\1\//111;17; 34 82 6.085‘2113);739,23 183.2921.?3]{6.878,54 189.3771.123;]{6.617,77 9,64%
Dzn(l—an Q) 31 141 4.436.II]§§)1I.{958,96 167.1191.];)5127.153,96 171.5551.]9);1{9.1 12,92 16,57%
15%) .5) 34 48 IDR IDR IDR 5.64%

5.801.762.203,39

183.292.636.878,54

189.094.399.081,93

The results of the comparative simulation showed significant performance differences

between the inventory control methods (Min-Max, (s,Q), and (s,S)) in the face of three demand
conditions: normal, increasing by 20%, and decreasing by 15%. This simulation was conducted
for two main products, namely Gasoline RON 92 and Gasoil 0.05% S, and ran for 851 days for
each combination of methods and demand scenarios. The long duration of the simulation aims
to ensure that order patterns, response to demand, and the effects of lead time and demand
variations can be analyzed comprehensively and reflect more realistic operational conditions.

In normal demand scenarios, the Min-Max method performs best in terms of maintaining
stock availability, with the lowest stockout percentage (0.94% for Gasoline RON 92 and 7.02%
for 0.05% S Gasoil). However, such performance has to be paid for with very high storage
costs, resulting in the largest total cost among other methods. In contrast, the (s,S) method
offers the lowest total cost, but sacrifices service levels with a very high number of stockout
days (22 days for Gasoline RON 92 and 326 days for 0.05% S Gasoil). Method (s,Q) indicates
a middle position—moderate operating costs and a tolerable stockout—making it the most
balanced method for normal conditions.

In high demand scenarios (+20%), all methods experience increased pressure on stocks.
For Gasoline RON 92, the Min-Max and (s,Q) methods were able to maintain a fairly good
level of service, while (s,S) showed efficient performance in terms of cost but with a higher
number of stockout days (70 days). At 0.05% S Gasoil, the (s,Q) method still provides the best
performance in cost efficiency, despite recording 300 days of stockout. In contrast, (s,S)
experienced a significant spike in the number of stockout days up to 324 days, indicating a high
risk to product availability under extreme demand conditions.

Meanwhile, in the low demand scenario (—15%), the Min-Max method excels in terms
of service by not experiencing stockouts at all, but storage costs become very high due to the
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high average daily stock. On the other hand, the method (s,Q) is the most cost-efficient option,
with a very low stockout rate (only 6 days for Gasoil 0.05% S and 0.71% for Gasoline RON
92). The (s,S) method still shows low operating costs, but has a higher number of stockout days
than (s,Q), which is 48 days for both products.

Overall, the results of the simulation over 851 days prove that there is no single method
that is absolutely superior. Choosing the most appropriate method depends largely on the
organization's priorities: whether it prioritizes product availability and customer satisfaction or
logistics cost efficiency. For situations that demand high availability, Min-Max is an ideal
choice despite its high cost. However, if cost efficiency is the main goal, especially in
conditions of declining demand, then the (s,Q) method is more recommended. The method
(s,S) is only suitable for use if the company is able to manage stockout risk with a backup
strategy or distribution flexibility, considering that its performance is highly dependent on
accurate reorder point and lead time parameters.

Managerial Implications

The results of the simulation that have been carried out provide various important
implications for PT XYZ's management, especially in designing a fuel inventory control
strategy that is adaptive to demand dynamics. One of the key findings is that there is no one
method of inventory control that is completely superior in all scenarios. Therefore, logistics
managers need to consider the trade-off between the cost of inventory and the service level in
every operational decision.

The Min-Max method has proven to be the most stable in maintaining stock availability,
with very low stockout rates even in high demand conditions. This suggests that this approach
is suitable for use in environments that require consistent product availability and minimal risk
of shortages, although storage costs tend to be higher. These findings are in line with the views
of Chopra and Meindl (2019), who emphasize the importance of balancing inventory costs with
customer service levels in supply chain strategies.

Meanwhile, the (s,Q) and (s,S) methods show efficiency in terms of cost, but with the
consequence of increased stockout risk, especially in an increasing demand scenario. The high
number of stockout days can interfere with the reliability of distribution services, which
according to Zinn and Liu (2001) can negatively impact customer satisfaction and loyalty in
the long run. Therefore, the use of efficiency-based methods such as (s,Q) or (s,S) should be
done with dynamic parameter adjustments, especially in periods of fluctuation or when supply
uncertainty occurs.

Furthermore, Rosi¢ et al. (2020) assert that the performance of inventory systems is
highly dependent on the match between demand methods and scenarios. Adjustments to stock
control strategies based on historical, seasonal, and short-term demand patterns will be a
determining factor for logistics effectiveness in the energy sector. In this context, the use of
historical data for data-driven simulation and planning is also highly recommended. Waller and
Fawcett (2013) stated that the integration of predictive analytics and modern logistics
information systems can improve the accuracy of managerial decisions and operational
resilience in the fuel supply chain. Overall, fuel inventory management at PT XYZ should be
geared towards a responsive and data-driven approach, considering the balance between cost
efficiency and service reliability. Simulations such as those conducted in this study can be a
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strong basis in strategic decision-making to ensure smooth distribution, avoid potential losses
due to stock shortages, and optimize the use of the company's logistics resources.

CONCLUSION

The simulation analysis of PT XYZ’s 851-day fuel supply chain for Gasoline RON 92
and Gasoil 0.05% S reveals that the current system struggles to address demand uncertainty
and supply chain dynamics, particularly due to untimely ship arrivals, supply-consumption
mismatches, and demurrage costs from cargo buildup during ullage shortages. The (s,Q)
method emerged as the most optimal inventory policy, balancing cost efficiency and stock
availability across normal and low-demand scenarios, while the Min-Max method, despite
higher costs, proved reliable for critical high-demand contexts by ensuring service levels.
Future research should prioritize integrating real-time data and advanced forecasting models
(e.g., machine learning) to enhance demand prediction accuracy, alongside automated
inventory tracking systems to reduce demurrage risks and improve operational agility in
volatile markets.
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