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ABSTRACT 

Fuel (BBM) is a strategic commodity that plays a crucial role in supporting various economic 

sectors. PT XYZ, one of the fuel suppliers in Timor Leste, faces significant challenges in ensuring 

a stable and timely supply. Issues such as demand fluctuations, lead time uncertainty, and limited 

storage capacity often trigger stockout risks and additional operational costs, such as demurrage. In 

2023, PT XYZ recorded two stockout events and two potential demurrage occurrences, resulting in 

financial losses and missed sales opportunities. This study aims to analyze the current performance 

of inventory and supply chain management for Gasoline RON 92 and Gasoil 0.05% Sulphur. This 

study adopts a Monte Carlo simulation approach to model the variability of daily demand and lead 

time more realistically. Three inventory control methods are evaluated: the Min-Max method, the 

(s,Q) method, and the (s,S) method, across three demand scenarios: normal, +20% increase, and -

15% decrease. Key performance indicators analyzed include Economic Order Quantity (EOQ), 

Safety Stock (SS), Reorder Point (ROP), total cost, and service level. The simulation was conducted 

over 851 days to reflect actual operational conditions. The results show that the Min-Max method 

performed best under the low-demand scenario, with the lowest total cost and no stockouts. The 

(s,Q) method provided the best balance between ordering frequency, operational cost, and service 

level in the normal demand scenario. Meanwhile, the (s,S) method demonstrated less efficient 

performance under the high-demand scenario due to higher stockouts and increased holding costs. 

These findings recommend adopting inventory control strategies that are adaptive to demand 

dynamics and consider storage capacity limitations to enhance PT XYZ’s fuel supply chain 

efficiency and resilience. 
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INTRODUCTION 

One of the big challenges in the fuel supply chain is overcoming stockout. Stockouts 

not only have an impact on the company's operations, finances, and image, but can also cause 

a domino effect on the economy at large (Govindan et al., 2018). On the other hand, 

demurrage (costs incurred due to delays in the demolition process) also adds to the burden of 

the company's operational costs (R. , D. G. G., & C. F. Patriarca, 2020). According to the 

Energy Outlook 2023 report, fuel delivery delays due to supply chain inflexibility can increase 

distribution costs by up to 10–15% per year, especially in regions with limited storage 

infrastructure (International Energy Agency (IEA), 2023). To manage fluctuating demand and 

ensure timely availability of fuel, careful and accurate planning is needed in the fuel supply 

chain. The report also mentions that improving storage infrastructure and improving accuracy 

in planning can reduce the risk of stockouts by up to 25%. 

As one of the companies engaged in fuel supply, PT XYZ faces various significant 

challenges related to fuel supply chain management. Fuel supply at PT XYZ depends on 

supply from Singapore and Malaysia with special specifications of Gasoline RON 92 and 
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Gasoil 0.05% Sulphur, which are different from the market in Indonesia (Chong, 2017). The 

main challenge faced is the inflexibility of fuel delivery related to changes in the Accepted 

Loading Date (ALD) and Accepted Discharge Date (ADD) schedules (Amico et al., n.d.; Teng, 

2020). Every fuel delivery plan must be scheduled exactly one month in advance, and if there 

is a change in the schedule, it is not easy to do, so it can cause significant delays. The demand 

planning process is carried out regularly through Demand Planning meetings and Master 

Program simulations between the Marketing Function and the Operations Planning Function 

(SNOP) (Singh et al., n.d.; Verma et al., n.d.). 

However, one of the obstacles that is often faced is the considerable deviation between 

the results of demand planning and sales realization (Jeble et al., 2018). The limited capacity 

of the storage tanks owned by PT XYZ also sometimes causes demurrage when tankers have 

to wait for the unloading of the entire load (Pujawan et al., 2015; Rodrigues, A., et al. (2010), 

n.d.). Then, the duration of delivery from Singapore to PT XYZ also takes quite a long time, 

which is about 7 days under normal weather conditions. Thus, when the realization of sales 

exceeds the plan, it has the potential to cause critical stock or even stockout, where the fuel 

stock runs out before the next supply tanker arrives. On the other hand, when the realization 

of sales is lower than planned, PT XYZ has the potential to bear the cost of demurrage due to 

the delay in the dismantling of tankers that have arrived according to schedule. In 2023, PT 

XYZ experienced two critical stock incidents (stockouts) and two instances of potential 

demurrage that caused company losses. 

In 2023, PT XYZ faced several major challenges related to mismatches between plans 

and fuel sales realization, which had a direct impact on stock availability and demurrage risk. 

Based on the data of Plan vs. Realization of Gasoil 0.05% Sulphur and Gasoline RON 92 

products as shown in the Figure above, there are significant fluctuations in the fulfillment of 

fuel demand throughout the year. During 2023, there were two critical stock conditions that 

occurred in May and September. In May, the realization of Gasoline RON 92 reached 120% 

of the planned amount, which caused critical stocks. The same thing also happened in 

September, when sales realization reached 145% of the plan, so at that time there was also a 

critical stock situation where the realization of fuel sales far exceeded the supply. As a result, 

PT XYZ experienced distribution disruptions, namely not being able to meet customer needs 

and losing sales opportunities to achieve revenue targets. This led to significant losses, 

because the potential income that should have been obtained at that time could not be realized, 

amounting to USD 242,000 (Mahendra et al., n.d.). 

In addition to stockout problems, PT XYZ also faced two potential demurrage incidents 

in the same year. This happened in June 2023 and July 2023, where the realization of fuel 

sales was under plan. In June 2023, sales realization only reached 89% of the plan, and in July 

2023 it only reached 92% of the plan. When the realization of sales is lower than planned, the 

tanker that has been scheduled to arrive has to wait longer for unloading because the stock in 

the storage tank is still full, so demurrage arises due to waiting ullage. This condition leads to 

increased operational costs and losses for the company. This imbalance between sales 

realization and sales planning shows that improvements in the planning process are urgently 

needed. Improvements in planning methods, stock management, and increased flexibility in 

the fuel supply chain will be key in reducing the risk of stockouts and demurrage in the future. 
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One of the main challenges faced by PT XYZ in managing the fuel supply chain is the 

inability to maintain sufficient inventory to meet demand at various distribution points. When 

there is insufficient inventory, there is a stockout that hinders the smooth distribution of fuel 

and has an impact on the cessation of energy supply that is urgently needed by vital sectors 

such as transportation and industry. This condition not only causes financial losses for PT 

XYZ but also has an impact on the wider community who are highly dependent on the 

availability of fuel to support daily economic activities. The following are the inventory 

conditions from the company for Gasoil 0.05% Sulphur and Gasoline RON 92 products. 

Weaknesses in inventory management have led to two critical stock shortages in 2023, namely 

in May and September. This condition emphasizes the importance of implementing a more 

effective inventory control strategy to avoid repeated stock shortages. 

In addition to stockout challenges, PT XYZ also faces significant demurrage costs due 

to delays in the fuel loading and unloading process. The company's loss costs arising from 

demurrage claims for the incident amounted to USD 19,825. Mismatches between planned 

inventory volumes and actual requirements often lead to delays, where tankers have to wait at 

the dock until ullage is available in the stockpile tank. This problem is caused by a lack of 

flexibility in storage capacity and suboptimal scheduling in the supply process. Whenever 

there is a delay in dismantling, the company has to bear additional costs in the form of 

demurrage claims from suppliers, which ultimately increases the overall operational cost 

burden. 

The application of Monte Carlo simulations in this study is essential because it is able 

to overcome the inherent uncertainty in the management of fuel inventories and distribution 

processes. With this simulation method, the company can model various scenarios with 

fluctuating operational variable conditions, thus helping PT XYZ in anticipating and 

managing stockout and demurrage risks more effectively. Monte Carlo simulations provide a 

probabilistic picture of events that could affect fuel availability, allowing companies to design 

proactive supply chain strategies to reduce costs and ensure operational efficiency. 

In the context of fuel inventory management, especially for RON 92 and Gasoil 

products, the Monte Carlo simulation method has an important role because it can handle 

uncertainties in stock control caused by demand variability and shipping constraints. Monte 

Carlo simulations allow companies to simulate a variety of scenarios with random variables, 

such as sudden changes in stock requirements or delays in the delivery process. With this 

approach, companies can gain a deeper understanding of the probability of stockouts or 

demurrage, as well as test various strategies to minimize these risks. In addition, this method 

supports data-driven decision-making, which can improve inventory efficiency and reduce 

reliance on excessive safety stocks, thus saving PT XYZ's operational costs overall. Not only 

that, but the use of Monte Carlo can enable researchers to model broader uncertainties, both 

in terms of demand variation and wait times, resulting in more accurate estimates of total costs 

and service levels. R. Patriarca et al. (2022) revealed that Monte Carlo simulations can identify 

the probability distribution of lead time, so that companies can plan more accurate safety 

stocks based on the uncertainty of that shipment. Weraikat et al. (2019) stated that the use of 

Monte Carlo for lead time variability can help reduce the risk of overstock or understock by 

providing more adaptive predictions of demand fluctuations. 
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A previous study by R. Patriarca et al. (2022) demonstrated the use of Monte Carlo 

simulations in identifying the probability distribution of lead time in inventory management. 

They suggested that these simulations could be used to improve safety stock planning by 

accounting for uncertainties in shipment times. While their research highlights the potential 

of Monte Carlo simulations for managing lead time variability, it does not specifically address 

how these simulations can be used to reduce stockout risks in industries with highly volatile 

demand, such as fuel supply chains. This gap is addressed by the present study, which applies 

Monte Carlo simulations to model fuel stockouts and demurrage risks, offering more tailored 

solutions for managing uncertainties in fuel inventory and distribution, where demand 

fluctuation and supply delays are more pronounced (Castano & Amengual, 2020). 

The primary goal of this research is to analyze the current performance of inventory and 

supply chain management for Gasoline RON 92 and Gasoil 0.05% Sulphur, and to develop 

an optimal inventory policy to reduce stockout and demurrage risks. The study’s practical 

benefits include providing PT XYZ with strategies to minimize operational costs and enhance 

the fuel supply's efficiency and stability. Academically, it contributes to the literature by 

integrating Monte Carlo simulations into fuel supply chain management, offering new insights 

for improving inventory control in energy logistics 

 

METHOD 

This study adopts a Monte Carlo simulation approach to model the variability of daily 

demand and lead time more realistically. The research flowchart in Figure 1 provides a 

comprehensive overview of the stages involved in the fuel supply chain management analysis 

process at PT XYZ. This diagram integrates the Monte Carlo simulation approach with 

inventory management methods—Economic Order Quantity (EOQ), Safety Stock (SS), and 

Reorder Point (ROP)—to address demand fluctuations that often trigger stockout risks and 

demurrage costs (Banthao et al., n.d.). 

The methodology begins by quantifying historical demand patterns and lead time 

variability for Gasoline RON 92 and Gasoil 0.05% Sulphur. Using probabilistic distributions 

derived from real-world data, the Monte Carlo simulation generates thousands of potential 

scenarios to evaluate the performance of three inventory control strategies: the Min-Max 

method, the (s,Q) method, and the (s,S) method (Waller et al., 2013). These strategies are tested 

under three demand scenarios: normal, +20% increase, and -15% decrease. Key metrics such as 

total costs (holding, ordering, and demurrage), service levels, and stockout frequencies are 

analyzed to identify optimal policies. 

The flowchart emphasizes iterative refinement, where simulation outcomes inform 

adjustments to safety stock levels, reorder points, and order quantities. By aligning inventory 

decisions with probabilistic demand and supply forecasts (Cedolin et al., n.d.), PT XYZ can 

mitigate risks associated with storage limitations and volatile market conditions. This approach 

not only enhances operational resilience but also supports data-driven decision-making to 

balance cost efficiency and service reliability in Timor Leste’s fuel supply chain (Kurniawan et 

al., 2022). 

The stages in the diagram begin with identifying the company’s challenges and culminate 

in implementing an optimal inventory management strategy. Each stage addresses specific fuel 
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supply chain constraints, from resolving mismatches between planning and demand realization 

to adjusting storage capacity to prevent excessive operational costs. 

During the data collection stage, relevant information—including monthly demand, lead 

time, storage costs, and booking costs—is gathered to establish an accurate foundation for 

calculating Economic Order Quantity (EOQ), Safety Stock (SS), and Reorder Point (ROP). 

These calculations are then tested via Monte Carlo simulations to model various demand 

fluctuation scenarios. This simulation phase evaluates the sensitivity of forecasting and stock 

management to demand variability, ensuring strategies are robustly prepared for uncertainty. 

The final stage involves implementing and evaluating the derived strategy, enabling PT XYZ to 

achieve efficient fuel stock management and distribution. 

The study utilizes secondary data for inventory management analysis and supply chain 

optimization. Below is a detailed breakdown of the data types and sources: 

 

Table 1. Data Types and Their Sources 

Yes Data Type Data Source 

1 Historical Data on Fuel Demand Sales, distribution, internal reports of PT XYZ 

2 Data Lead Time 
Logistics department, transportation management 

system (TMS) 

3 Inventory Data (Fuel Stocks) 
PT XYZ INVENTORY MANAGEMENT SYSTEM 

(ERP, IMS) 

4 
Operational Cost and Demurrage 

Data 

Financial statements, logistics and finance 

department of PT XYZ 

5 Fuel Price and Cost Data Procurement Department of PT XYZ 

 

This stage involves analyzing data to optimize PT XYZ’s fuel supply chain management 

by reducing stockout risks and demurrage costs caused by unpredictable demand fluctuations. 

Key steps include calculating Economic Order Quantity (EOQ), Safety Stock (SS), and Reorder 

Point (ROP) to establish inventory benchmarks, followed by Monte Carlo simulations to test 

strategy resilience against demand variability. These simulations model diverse scenarios—

such as sudden demand spikes or drops—to identify vulnerabilities in current protocols, 

enabling PT XYZ to refine order quantities, safety buffers, and replenishment schedules. By 

integrating probabilistic forecasting with inventory optimization, the analysis provides 

actionable insights to balance cost efficiency and service reliability while mitigating 

operational risks. 

 

RESULTH AND DISCUSSION 

Company Description 

PT XYZ gets regular fuel supply from Singapore for Gasoline RON 92 and Gasoil 0.05% 

S products using tanker mode. However, in emergency conditions, PT XYZ gets alternative 

supplies from Indonesia, namely from Kupang and Atapupu using tank car mode. Fuel 

imported from Singapore is stored in the storage tank of the PT XYZ Fuel Terminal. From the 

data on the realization of fuel supply using the tanker mode above, the smallest total supply 

volume (Gasoline RON 92 and Gasoil 0.05% S) per shipment is 3,156,747 liters and the largest 

supply volume per shipment is 5,500,971 liters. The fuel is then stored in storage tanks, then 

then distributed to consumers, both owned petrol stations, private petrol stations and industrial 

consumers.  The distribution of fuel to consumers is mostly carried out using tank car modes 
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for petrol station and small industry consumers, but for large industrial consumers it is carried 

out using barge modes. The distribution of Gasoline RON 92 fuel is the lowest at 1,958,000 

liters per month and the highest at 3,729,880 liters per month. As for the distribution of Gasoil 

0.05% S fuel, the lowest is at 1,219,200 liters per month and the highest at 3,348,890 liters per 

month. 

 

Simulated Demand Scenarios 

After determining the basic parameters of the inventory system such as EOQ, Safety 

Stock, and Reorder Point (ROP), the next stage is to conduct a monte carlo simulation of the 

implementation of inventory control strategies in various demand conditions. This simulation 

aims to evaluate the performance of three stock control methods, namely Min-Max, (s,Q), and 

(s,S), in maintaining the availability of RON 92 Gasoline and 0.05% S Gasoil fuel at PT XYZ's 

storage facility. Each method was tested in three different scenarios, namely the normal 

demand scenario (based on historical actual data), the high demand scenario (+20% of the 

average daily demand), and the low demand scenario (−15% of the average daily demand). 

This approach is carried out to test the sensitivity of each method to demand fluctuations that 

may occur in fuel distribution operations. This simulation will be carried out to project a total 

of 852 days based on historical data and then the results will be analyzed. 

In the monte Carlo simulation, each method will be evaluated based on a number of key 

performance indicators, namely the number of days of stockout, the number of orders placed, 

the average daily stock, and the total cost, which consists of the cost of ordering and storage 

costs. The simulation results will be compared between methods and between scenarios for 

each fuel product, in order to identify the most effective and efficient method in answering the 

dynamics of needs in the field.  

It should be emphasized that the data presented in this report, particularly in the form of 

daily simulation tables, are only a snapshot of the simulation results for the first 30 days as an 

initial representation of the inventory system's response to each scenario and control method. 

This view aims to provide a more concrete and easy-to-understand picture of the reorder flow, 

stock changes, and the potential for stockouts during daily operational periods. 

Nevertheless, in practice, a thorough inventory system simulation is carried out for a 

long-term projection of 852 days based on actual demand data obtained from 2022 to 2024. 

The entire evaluation of the method's performance—including the total number of orders, the 

number of stockout days, the average daily stock, and the calculation of the total cost—was 

generated from the full simulation process over the course of 852 days. 

 

Scenario 1: Normal Demand 

The first scenario in this simulation uses actual historical data from 2022 to 2024 as a 

representation of normal demand conditions. This data reflects the daily distribution pattern of 

Gasoline RON 92 and Gasoil 0.05% S as occurred in PT XYZ's real operations, without any 

modifications or projections of increasing or decreasing demand. The purpose of this scenario 

is to evaluate the performance of each inventory control method under stable demand 

conditions and reflect the day-to-day operational conditions. Simulations were carried out to 

determine the level of cost efficiency, frequency of orders, risk of stock shortages, and average 

inventory availability under basic conditions before being tested in extreme scenarios. The full 
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simulation results that will be shown in this report are only for Gasoline RON 92 products 

while Gasoil 0.05% S can be seen in Appendix 6. The results of the comparison of the two 

products will be presented in the next section. The following are the simulation results for 

scenario 1 with the min-max method. 

Simulation of the Min-Max (s,S) method for 30 days under normal demand conditions 

shows that the stock control mechanism works dynamically based on daily demand 

fluctuations. At the beginning of the simulation, the initial stock of 1,401,470 liters experienced 

a gradual decline as daily demand was met. From day 1 to day 12, the system is still able to 

meet demand without experiencing stockouts. However, since the 13th day, the stock has 

started to touch the reorder point (ROP) level, and on the 17th day the stock has touched a 

critical point. 

New orders do not come immediately due to lead time. This causes stockout to occur 

from day 17 to day 24, indicated by the Stockout column with a value of 1. This signifies that 

during that period the demand cannot be met due to depletion of stock or insufficient supply. 

The new order was finally shipped and received on the 25th day with a volume of 2,600,000 

liters, which is the maximum level (S) value of the Min-Max method. Once the supply came 

in, the stock increased significantly and was again able to meet daily demand for the remainder 

of the simulation period without experiencing further stockouts. 

Method simulation (s,Q) for 30 days with normal daily demand data shows the dynamics 

of stock management that depends on the reorder point/s trigger. At the beginning of the 

simulation period, the initial stock of 1,401,470 liters gradually decreased in line with the 

fulfillment of fluctuating daily demand. 

The system uses logic (s,Q), which triggers a fixed amount of reorders (Q) whenever the 

stock touches or is below the limit of the Reorder Point(s). In this simulation, the order is placed 

on the 1st day, but because this method uses a lead time that resembles real conditions, the 

order does not go directly into stock. It is noted that orders placed on the first day are only 

received on the 30th day, as shown in the "Incoming Orders" column which is worth 2,600,000 

liters, and the "Incoming Order Day" column shows the number 56 (meaning that it was 

previously calculated to enter after a certain lead time). Then the following are the results for 

scenario 1 normal with the (s,S) method. 

 

Table 2. Si mulation of Normal Scenarios with Method (s,S) 

Da

y 
Demand 

Inco

ming 

Orde

r 

Initial 

Stock 

Final 

Stock 

Sent 

order 

Order 

Day 

Coming 

In 

Active 

Order 

Status 

Stockou

t 

1 
64343,810

36 
0 

1401470,

436 

1337126,6

26 
YA 28 ACTIVE NO 

2 
80970,255

19 
0 

1337126,

626 

1256156,3

71 
NO - ACTIVE NO 

3 
39396,569

61 
0 

1256156,

371 

1216759,8

01 
NO - ACTIVE NO 

4 
72293,127

91 
0 

1216759,

801 

1144466,6

73 
NO - ACTIVE NO 

5 
173372,00

07 
0 

1144466,
673 

971094,67
24 

NO - ACTIVE NO 
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Da

y 
Demand 

Inco

ming 

Orde

r 

Initial 

Stock 

Final 

Stock 

Sent 

order 

Order 

Day 

Coming 

In 

Active 

Order 

Status 

Stockou

t 

6 
23318,667

42 
0 

971094,6

724 

947776,00

49 
NO - ACTIVE NO 

7 
133897,13

61 
0 

947776,0

049 

813878,86

88 
NO - ACTIVE NO 

8 0 0 
813878,8

688 

813878,86

88 
NO - ACTIVE NO 

9 
94935,907

74 
0 

813878,8

688 

718942,96

11 
NO - ACTIVE NO 

10 
129884,29

68 
0 

718942,9

611 

589058,66

43 
NO - ACTIVE NO 

11 
128897,77

6 
0 

589058,6

643 

460160,88

83 
NO - ACTIVE NO 

12 
122400,21

98 
0 

460160,8

883 

337760,66

85 
NO - ACTIVE NO 

13 
39806,230

63 
0 

337760,6

685 

297954,43

79 
NO - ACTIVE NO 

14 
85237,022

43 
0 

297954,4

379 

212717,41

55 
NO - ACTIVE NO 

15 
643,33351

19 
0 

212717,4

155 

212074,08

2 
NO - ACTIVE NO 

16 
123798,28

61 
0 

212074,0

82 

88275,795

86 
NO - ACTIVE NO 

17 
106781,81

9 
0 

88275,79

586 
0 NO - ACTIVE YES 

18 
80352,608

86 
0 0 0 NO - ACTIVE 

YES 

19 
61412,299

62 
0 0 0 NO - ACTIVE 

YES 

20 
62678,196

52 
0 0 0 NO - ACTIVE 

YES 

21 
125924,05

39 
0 0 0 NO - ACTIVE 

YES 

22 
100977,04

02 
0 0 0 NO - ACTIVE 

YES 

23 0 0 0 0 NO - ACTIVE NO 

24 
125069,54

06 
0 0 0 NO - ACTIVE 

YES 

25 
113395,51

13 
0 0 0 NO - ACTIVE 

YES 

26 0 0 0 0 NO - ACTIVE NO 

27 
53029,650

17 
0 0 0 NO - ACTIVE YES 

28 
147379,41

98 

2600

000 
2600000 

2452620,5

8 
YA 49 ACTIVE NO 

29 
194772,90

29 
0 

2452620,

58 

2257847,6

77 
NO - ACTIVE NO 

30 
53026,687

59 
0 

2257847,

677 

2204820,9

9 
NO - ACTIVE NO 

 

A 30-day simulation method (s,S) illustrates how the inventory control system works 

when demand varies daily. In this method, orders are placed when the stock touches or is below 
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the reorder point (ROP), and the order volume is intended to replenish inventory until it reaches 

the maximum level (S). At the beginning of the simulation, the initial stock of 1,401,470 liters 

continued to decline in response to the meeting of daily demand. When the stock is below the 

ROP, the system triggers a reorder on the 1st day. However, because the system applies lead 

times that resemble real conditions in the field—that is, lead times that can vary due to 

operational and logistical factors—orders are not immediately accepted. Based on this 

simulation, orders sent on day 1 only come in on day 28. During the waiting period for the 

arrival of orders, the stock continued to decline and reached the point of exhaustion on the 17th 

day, which led to 11 consecutive days of stockouts (17th to 27th days). The system's inability 

to meet demand in that period is illustrated by the "Stockout?" column marked YES. 

Scenario 2: High Demand (+20%) 

The second scenario was designed to simulate operational conditions at a time of 20% 

increase in demand compared to the actual average daily demand. This scenario is designed to 

test the resilience and responsiveness of the inventory control system to significant spikes in 

demand, which can occur due to various factors such as seasonal increases in consumption, 

supply disruptions in other regions, or government policies that encourage the consumption of 

certain fuels. By increasing the demand parameters by 20%, this simulation is an important 

tool to assess how effective the Min-Max, (s,Q), and (s,S) methods are in maintaining stock 

availability levels and preventing stockouts under high load conditions. 

 

Table 3. Simulation of +20% Demand Scenario with Min-Max Method 

Day Demand Initial stock Incoming Order  Final stock Stockout 

1 77212,57 1401470 0 1324258 0 

2 97164,31 1324258 0 1227094 0 

3 47275,88 1227094 0 1179818 0 

4 86751,75 1179818 0 1093066 0 

5 208046,4 1093066 0 885019,5 0 

6 27982,4 885019,5 0 857037,1 0 

7 160676,6 857037,1 0 696360,6 0 

8 0 696360,6 0 696360,6 0 

9 113923,1 696360,6 0 582437,5 0 

10 155861,2 582437,5 0 426576,3 0 

11 154677,3 426576,3 0 271899 0 

12 146880,3 271899 0 125018,7 0 

13 47767,48 125018,7 0 77251,24 0 

14 102284,4 77251,24 0 0 1 

15 772,0002 0 0 0 1 

16 148557,9 0 0 0 1 

17 128138,2 0 0 0 1 

18 96423,13 0 0 0 1 

19 73694,76 0 0 0 1 

20 75213,84 0 0 0 1 

21 151108,9 0 0 0 1 

22 121172,4 0 0 0 1 



 
Inventory Management of Gasoline Ron 92 and Gasoil 0,05% Sulphur with Monte Carlo Simulation 

1560                              Vol. 4, No. 7, June 2025 

Day Demand Initial stock Incoming Order  Final stock Stockout 

23 0 0 0 0 1 

24 150083,4 0 0 0 1 

25 136074,6 0 2600000 2463925 0 

26 0 2463925 0 2463925 0 

27 63635,58 2463925 0 2400290 0 

28 176855,3 2400290 0 2223435 0 

29 233727,5 2223435 0 1989707 0 

30 63632,03 1989707 0 1926075 0 

 

A 30-day simulation using the Min-Max method (s,S) under conditions of increased 

demand by 20% showed that the stock control system faced greater pressure than normal 

conditions. At the beginning of the simulation, the initial stock of 1,401,470 liters began to 

dwindle rapidly due to the relatively high demand in the early days, as seen on day 5 which 

recorded the highest daily demand of 208,046 liters. 

The Min-Max system works with a reorder mechanism when the stock touches the 

reorder point (Reorder Point/s), with the quantity replenished until it reaches the maximum 

level (S). In this simulation, the system detects that the stock has been below the order point 

on day 1, so the order is shipped immediately. However, because the simulation uses a lead 

time that resembles real conditions (i.e. variable lead time), a new order entered the system on 

the 25th day of 2,600,000 liters. As a result of this waiting time, there was a long stockout, 

namely for 13 consecutive days from the 13th day to the 25th. The period shows that the system 

cannot meet demand due to delays in stock fulfillment. Column "Stockout" 

 

Table 4. Simulation of +20% Demand Scenario with Method (s,Q) 

Da

y 
Demand 

Incomi

ng 

Order 

Initial 

Stock 

Final 

Stock 

Sent 

order 

Order 

Day 

Coming 

In 

Active 

Order 

Status 

Stoc

kout 

1 
77212,57

243 
0 

1401470

,436 

1324257

,864 
YES 23 AKTIF 

NO 

2 
97164,30

623 
0 

1324257

,864 

1227093

,557 
NO - AKTIF 

NO 

3 
47275,88

353 
0 

1227093

,557 

1179817

,674 

NO 
- AKTIF 

NO 

4 
86751,75

349 
0 

1179817

,674 

1093065

,92 

NO 
- AKTIF 

NO 

5 
208046,4

008 
0 

1093065

,92 

885019,

5196 

NO 
- AKTIF 

NO 

6 
27982,40

09 
0 

885019,

5196 

857037,

1187 

NO 
- ACTIVE 

NO 

7 
160676,5

633 
0 

857037,

1187 

696360,

5554 

NO 
- 

ACTIVE NO 

8 0 0 
696360,

5554 

696360,

5554 

NO 
- 

ACTIVE NO 

9 
113923,0

893 
0 

696360,

5554 

582437,

4661 

NO 
- 

ACTIVE NO 

10 
155861,1

561 
0 

582437,

4661 

426576,

31 

NO 
- 

ACTIVE NO 
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Da

y 
Demand 

Incomi

ng 

Order 

Initial 

Stock 

Final 

Stock 

Sent 

order 

Order 

Day 

Coming 

In 

Active 

Order 

Status 

Stoc

kout 

11 
154677,3

312 
0 

426576,

31 

271898,

9788 

NO 
- 

ACTIVE NO 

12 
146880,2

638 
0 

271898,

9788 

125018,

715 

NO 
- 

ACTIVE NO 

13 
47767,47

676 
0 

125018,

715 

77251,2

3826 

NO 
- 

ACTIVE NO 

14 
102284,4

269 
0 

77251,2

3826 
0 

NO 
- 

ACTIVE YES 

15 
772,0002

143 
0 0 0 

NO 
- 

ACTIVE YES 

16 
148557,9

433 
0 0 0 

NO 
- 

ACTIVE YES 

17 
128138,1

828 
0 0 0 

NO 
- 

ACTIVE YES 

18 
96423,13

063 
0 0 0 

NO 
- 

ACTIVE YES 

19 
73694,75

955 
0 0 0 

NO 
- 

ACTIVE YES 

20 
75213,83

583 
0 0 0 

NO 
- 

ACTIVE YES 

21 
151108,8

646 
0 0 0 

NO 
- 

ACTIVE YES 

22 
121172,4

483 
0 0 0 

NO 
- 

ACTIVE YES 

23 0 
260000

0 
2600000 2600000 YES 45 

ACTIVE NO 

24 
150083,4

488 
0 2600000 

2449916

,551 
NO - 

ACTIVE NO 

25 
136074,6

136 
0 

2449916

,551 

2313841

,938 

NO 
- 

ACTIVE NO 

26 0 0 
2313841

,938 

2313841

,938 

NO 
- 

ACTIVE NO 

27 
63635,58

02 
0 

2313841

,938 

2250206

,357 

NO 
- 

ACTIVE NO 

28 
176855,3

038 
0 

2250206

,357 

2073351

,054 

NO 
- 

ACTIVE NO 

29 
233727,4

835 
0 

2073351

,054 

1839623

,57 

NO 
- 

ACTIVE NO 

30 
63632,02

51 
0 

1839623

,57 

1775991

,545 

NO 
- 

ACTIVE NO 

 

A 30-day method (s,Q) simulation at a demand increase of 20% showed how the fixed 

order (Q) system responded to the increase in the daily consumption load. At the beginning of 

the period, the system started with a stock of 1,401,470 liters, which began to gradually decline 

due to the fulfillment of higher-than-normal demand, as seen on the 5th and 6th days with the 

demand exceeding 200,000 liters per day. 

The (s,Q) system works by logic: orders of a fixed amount Q are sent whenever the stock 

touches or is below the reorder point (ROP). In this simulation, the order trigger occurs on day 

1, as recorded in the "Order Shipped?" column which is YES, and the system sets the order day 
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to be entered on day 23. This reflects the use of lead time that resembles real conditions, where 

the time lag between an order and the arrival of a supply can be variable. 

However, due to the long lead time, there was a stockout that started on the 14th day and 

lasted until the 22nd day, a total of 9 consecutive stockout days. This can be seen from the 

"Stockout?" column which is valued YES in that period, indicating the system's inability to 

meet demand due to delays in incoming orders. 

 

Table 5. Simulation of +20% Demand Scenario with Method (s,S) 

Day Demand Initial stock Incoming Order  Final stock Stockout Day 

1  133,733.56    2,500,000.00                 -      2,366,266.44  FALSE TRUE 

2    93,550.22    2,366,266.44                 -      2,272,716.22  FALSE FALSE 

3  143,287.67    2,272,716.22                 -      2,129,428.54  FALSE FALSE 

4  198,681.90    2,129,428.54                 -      1,930,746.65  FALSE FALSE 

5    87,482.07    1,930,746.65                 -      1,843,264.57  FALSE FALSE 

6    87,483.11    1,843,264.57                 -      1,755,781.46  FALSE FALSE 

7  202,237.32    1,755,781.46                 -      1,553,544.14  FALSE FALSE 

8  150,865.57    1,553,544.14                 -      1,402,678.57  FALSE FALSE 

9    72,590.25    1,402,678.57                 -      1,330,088.31  FALSE FALSE 

10  136,634.83    1,330,088.31                 -      1,193,453.49  FALSE FALSE 

11    72,973.54    1,193,453.49                 -      1,120,479.95  FALSE FALSE 

12    72,827.22    1,120,479.95                 -      1,047,652.72  FALSE FALSE 

13  117,612.10    1,047,652.72                 -        930,040.63  FALSE FALSE 

14 -  18,778.11      930,040.63                 -        948,818.74  FALSE FALSE 

15 -    6,857.98      948,818.74                 -        955,676.72  FALSE FALSE 

16    66,716.76      955,676.72                 -        888,959.96  FALSE FALSE 

17    38,205.01      888,959.96                 -        850,754.95  FALSE FALSE 

18  122,186.51      850,754.95                 -        728,568.43  FALSE FALSE 

19    44,837.51      728,568.43                 -        683,730.92  FALSE FALSE 

20    12,925.18      683,730.92                 -        670,805.74  FALSE FALSE 

21  195,050.65      670,805.74                 -        475,755.09  FALSE FALSE 

22    88,012.20      475,755.09                 -        387,742.89  FALSE FALSE 

23  106,573.39      387,742.89                 -        281,169.50  FALSE FALSE 

24    12,137.66      281,169.50                 -        269,031.84  FALSE FALSE 

25    67,849.83      269,031.84                 -        201,182.01  FALSE FALSE 

26  109,319.51      534,915.57    333,733.56      425,596.06  FALSE TRUE 

27    29,461.67      425,596.06                 -        396,134.39  FALSE FALSE 

28  126,075.30      396,134.39                 -        270,059.09  FALSE FALSE 

29    64,289.78      270,059.09                 -        205,769.31  FALSE FALSE 

30    83,840.74      205,769.31                 -        121,928.56  FALSE FALSE 

 

A 30-day simulation of the method (s,S) or Min-Max under conditions of increased 

demand by 20% shows that the inventory control system is able to maintain stock availability 

quite effectively, despite higher than usual demand pressures. 

At the beginning of the period, the system started with a stock of 1,401,470 liters, which 

began to gradually decrease as the daily demand was met with relatively high demand—

especially on day 5 which recorded a demand of more than 208,000 liters. When the stock 
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touches the reorder point (ROP), the system automatically triggers a reorder on day 1, as 

indicated in the "Order Shipped?" column which is YES, and the system schedules incoming 

orders on day 18. It reflects the application of lead time that resembles real conditions, which 

takes into account variations in the time of arrival of supplies based on field conditions. 

The system managed to maintain stock availability until the 14th day, but started 

experiencing stockouts for 3 consecutive days (15th to 17th day), marked by a "Stockout?" 

column with a value of YES. This happens because the stock is completely out of stock ahead 

of the order coming in. An order of 2,600,000 liters finally came in on the 18th day, 

replenishing stocks to 2,503,576 liters and restoring fuel availability. 

 

Scenario 3: Low Demand (−15%) 

The third scenario in this simulation is designed to represent operational conditions when 

there is a 15% decrease in demand from the actual average demand. Just like the previous 

scenarios, the simulated inventory control methods include Min-Max, (s,Q), and (s,S), using 

pre-calculated EOQ, Safety Stock, and ROP parameters. The difference lies in the adjusted 

daily demand volume dropping by 15% to test how the system responds to oversupply or 

potential overstock conditions. 

The presentation structure in this section follows the previous pattern, which is to show 

the first 30 days of simulation footage for each method. However, given that the characteristics 

of low demand conditions are more relevant to be analyzed as a whole to cost efficiency and 

overstock risk, the discussion of the results of this scenario will be presented comparatively in 

the next section, along with the evaluation between methods and scenarios. 

 

Table 6. Demand Scenario Simulation -15% with Min-Max Method 

Day Demand Initial stock Incoming Order  Final stock Stockout 

1              54.692,24         1.401.470,44  0        1.346.778,20  0 

2              68.824,72         1.346.778,20  0        1.277.953,48  0 

3              33.487,08         1.277.953,48  0        1.244.466,40  0 

4              61.449,16         1.244.466,40  0        1.183.017,24  0 

5           147.366,20         1.183.017,24  0        1.035.651,04  0 

6              19.820,87         1.035.651,04  0        1.015.830,17  0 

7           113.812,57         1.015.830,17  0            902.017,60  0 

8                             -              902.017,60  0            902.017,60  0 

9              80.695,52            902.017,60  0            821.322,08  0 

10           110.401,65            821.322,08  0            710.920,43  0 

11           109.563,11            710.920,43  0            601.357,32  0 

12           104.040,19            601.357,32  0            497.317,13  0 

13              33.835,30            497.317,13  0            463.481,84  0 

14              72.451,47            463.481,84  0            391.030,37  0 

15                    546,83            391.030,37  0            390.483,54  0 

16           105.228,54            390.483,54  0            285.254,99  0 

17              90.764,55            285.254,99  0            194.490,45  0 

18              68.299,72            194.490,45  0            126.190,73  0 

19              52.200,45            126.190,73  0              73.990,27  0 
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Day Demand Initial stock Incoming Order  Final stock Stockout 

20              53.276,47               73.990,27  0              20.713,81  0 

21           107.035,45               20.713,81  0                             -    1 

22              85.830,48                              -    0                             -    1 

23                             -                                -    0                             -    1 

24           106.309,11                              -    0                             -    1 

25              96.386,18                              -    2600000        2.503.613,82  0 

26                             -           2.503.613,82  0        2.503.613,82  0 

27              45.075,20         2.503.613,82  0        2.458.538,61  0 

28           125.272,51         2.458.538,61  0        2.333.266,11  0 

29           165.556,97         2.333.266,11  0        2.167.709,14  0 

30              45.072,68         2.167.709,14  0        2.122.636,45  0 

 

Simulation of a low demand scenario of −15% conducted using the Min-Max method 

over a 30-day period shows that this inventory control policy is able to maintain overall stock 

availability well, but there are still some critical points that require attention. At the beginning 

of the simulation, the inventory level was in adequate condition with an initial stock of 

1,401,470 liters. As the simulation progresses, the stock gradually decreases according to the 

daily demand pattern. This decrease in stock does not immediately trigger a reorder, because 

the stock is still above the minimum reorder point/s. 

However, from the 13th to the 24th day, there was a stockout condition which was 

characterized by the absence of stock left to meet daily demand. This is due to delays in 

responding to stock declines until they reach the reorder point, while delivery lead times have 

not been able to compensate for urgent needs. In total, there are 12 consecutive stockout days, 

which indicates that even though demand is falling, order triggers are too slow in responding 

to consumption realization. The recovery of new stocks occurred on the 25th day, with 

incoming orders of 2,600,000 liters, which is the maximum allowable capacity of tanks. After 

this replenishment, the rest of the simulation runs with stock in safe condition, without any 

additional stockouts. 

 

Table 7. Simulation of a -15% Demand Scenario with the Method (s,Q) 

Da

y  
Demand 

Incoming 

Order 

Initial 

Stock 

Ending 

Stock 

Shipped 

Order 

Day of Incoming 

Order 

Stock

out 

1 
      

54.692,24  

                        

-    

   

1.401.470,

44  

   

1.346.778,

20  

YES 29 

NO 

2 
      

68.824,72  

                        

-    

   

1.346.778,

20  

   

1.277.953,

48  

NO - 

NO 

3 
      

33.487,08  

                        

-    

   

1.277.953,

48  

   

1.244.466,

40  

NO 

- 

NO 

4 
      

61.449,16  

                        

-    

   

1.244.466,

40  

   

1.183.017,

24  

NO 

- 

NO 

5 

    

147.366,2

0  

                        

-    

   

1.183.017,

24  

   

1.035.651,

04  

NO 

- 

NO 
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Da

y  
Demand 

Incoming 

Order 

Initial 

Stock 

Ending 

Stock 

Shipped 

Order 

Day of Incoming 

Order 

Stock

out 

6 
      

19.820,87  

                        

-    

   

1.035.651,

04  

   

1.015.830,

17  

NO 

- 

NO 

7 

    

113.812,5

7  

                        

-    

   

1.015.830,

17  

       

902.017,60  

NO 

- 

NO 

8 
                      

-    

                        

-    

       

902.017,60  

       

902.017,60  

NO 
- 

NO 

9 
      

80.695,52  

                        

-    

       

902.017,60  

       

821.322,08  

NO 
- 

NO 

10 

    

110.401,6

5  

                        

-    

       

821.322,08  

       

710.920,43  

NO 

- 

NO 

11 

    

109.563,1

1  

                        

-    

       

710.920,43  

       

601.357,32  

NO 

- 

NO 

12 

    

104.040,1

9  

                        

-    

       

601.357,32  

       

497.317,13  

NO 

- 

NO 

13 
      

33.835,30  

                        

-    

       

497.317,13  

       

463.481,84  

NO 
- 

NO 

14 
      

72.451,47  

                        

-    

       

463.481,84  

       

391.030,37  

NO 
- 

NO 

15 
            

546,83  

                        

-    

       

391.030,37  

       

390.483,54  

NO 
- 

NO 

16 

    

105.228,5

4  

                        

-    

       

390.483,54  

       

285.254,99  

NO 

- 

NO 

17 
      

90.764,55  

                        

-    

       

285.254,99  

       

194.490,45  

NO 
- 

NO 

18 
      

68.299,72  

                        

-    

       

194.490,45  

       

126.190,73  

NO 
- 

NO 

19 
      

52.200,45  

                        

-    

       

126.190,73  

         

73.990,27  

NO 
- 

NO 

20 
      

53.276,47  

                        

-    

         

73.990,27  

         

20.713,81  

NO 
- 

NO 

21 

    

107.035,4

5  

                        

-    

         

20.713,81  

                        

-    

NO 

- 

YES 

22 
      

85.830,48  

                        

-    

                        

-    

                        

-    

NO 
- 

YES 

23 
                      

-    

                        

-    

                        

-    

                        

-    

NO 
- NO 

24 

    

106.309,1

1  

                        

-    

                        

-    

                        

-    

NO 

- 

YES 

25 
      

96.386,18  

                        

-    

                        

-    

                        

-    

NO 
- 

YES 

26 
                      

-    

                        

-    

                        

-    

                        

-    

NO 
- NO 

27 
      

45.075,20  

                        

-    

                        

-    

                        

-    

NO 
- 

YES 
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Da

y  
Demand 

Incoming 

Order 

Initial 

Stock 

Ending 

Stock 

Shipped 

Order 

Day of Incoming 

Order 

Stock

out 

28 

    

125.272,5

1  

                        

-    

                        

-    

                        

-    

NO 

- 

YES 

29 

    

165.556,9

7  

   

2.600.000,0

0  

   

2.600.000,

00  

   

2.434.443,

03  

YES 53 

NO 

30 
      

45.072,68  

                        

-    

   

2.434.443,

03  

   

2.389.370,

35  

NO - 

NO 

 

Simulation of low demand scenario (−15%) using the method (s,Q) for 30 days showed 

that the inventory control system was able to manage stock availability in a relatively stable 

manner, with only two days of stockout, namely on the 22nd and 24th days. This indicates that 

the method (s,Q) can still work effectively even under conditions of declining demand, 

provided that the parameters of the order point(s) and the order quantity (Q) are precisely set. 

At the beginning of the simulation, the system had an initial stock of 1,401,470 liters, 

which gradually decreased with the pace of daily demand. The order point(s) in this scenario 

is used as a reference to trigger a shipment when the stock is close to the minimum level. Orders 

of 2,600,000 liters (maximum tank capacity limit) only occurred on the 25th day and were 

received on the 29th day, following the actual lead time. 

This delay in delivery causes stockouts that occur for two days before the order is 

received. This shows that although the method (s,Q) has been quite efficient in terms of cost 

and frequency of orders, there is a need for further evaluation of the determination of order 

points in order to still take into account variations in demand and lead time to avoid supply 

gaps. After the order came in on the 29th day, the system again had a large amount of inventory 

of 2,434,443 liters and was able to serve the demand for the rest of the period without 

experiencing any more vacancies.  

 

Table 8. Demand Scenario Simulation -15% with (s,S) Method 

Day  Demand Incoming Order Initial Stock Ending Stock Shipped Order Day of Incoming Order Stockout 

1 54.692,24 - 1.401.470,44 1.346.778,20 YES 30 NO 

2 68.824,72 - 1.346.778,20 1.277.953,48 NO - NO 

3 33.487,08 - 1.277.953,48 1.244.466,40 NO - NO 

4 61.449,16 - 1.244.466,40 1.183.017,24 NO - NO 

5 147.366,20 - 1.183.017,24 1.035.651,04 NO - NO 

6 19.820,87 - 1.035.651,04 1.015.830,17 NO - NO 

7 113.812,57 - 1.015.830,17 902.017,60 NO - NO 

8 - - 902.017,60 902.017,60 NO - NO 

9 80.695,52 - 902.017,60 821.322,08 NO - NO 

10 110.401,65 - 821.322,08 710.920,43 NO - NO 

11 109.563,11 - 710.920,43 601.357,32 NO - NO 

12 104.040,19 - 601.357,32 497.317,13 NO - NO 

13 33.835,30 - 497.317,13 463.481,84 NO - NO 

14 72.451,47 - 463.481,84 391.030,37 NO - NO 

15 546,83 - 391.030,37 390.483,54 NO - NO 
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Day  Demand Incoming Order Initial Stock Ending Stock Shipped Order Day of Incoming Order Stockout 

16 105.228,54 - 390.483,54 285.254,99 NO - NO 

17 90.764,55 - 285.254,99 194.490,45 NO - NO 

18 68.299,72 - 194.490,45 126.190,73 NO - NO 

19 52.200,45 - 126.190,73 73.990,27 NO - NO 

20 53.276,47 - 73.990,27 20.713,81 NO - NO 

21 107.035,45 - 20.713,81 - NO - YES 

22 85.830,48 - - - NO - YES 

23 - - - - NO - NO 

24 106.309,11 - - - NO - YES 

25 96.386,18 - - - NO - YES 

26 - - - - NO - NO 

27 45.075,20 - - - NO - YES 

28 125.272,51 - - - NO - YES 

29 165.556,97 - - - NO - YES 

30 45.072,68 2.600.000,00 2.600.000,00 2.554.927,32 YES 64 NO 

 

Interpretation of Results 

After simulating three inventory control methods, namely Min-Max, (s, Q), and (s, S), in 

three demand conditions scenarios (normal, high, and low), the next stage is to compare and 

interpret the results of all the approaches that have been tested. This comparison aims to gain 

a more comprehensive understanding of the effectiveness and efficiency of each method in 

maintaining stock availability, avoiding stockouts, and controlling inventory costs, both in 

stable conditions and when facing fluctuations in demand. 

The analysis will focus on a number of key performance indicators, such as the number 

of days a stockout, the number of orders shipped, the average daily stock, and the total costs 

incurred, which include the cost of ordering and storage costs. The results of the three methods 

in various scenarios will be compared for each product, both Gasoline RON 92 and Gasoil 

0.05% S, in order to identify the inventory control strategy that best suits the operational 

dynamics and demand characteristics of each product. The following is a comparison of all 

scenarios and methods for Gasoline RON 92 products. 

 

Table 9. Comparison table 

Prod

uct 

Scenar

io 
Method 

Sent 

order 

Days of 

Stockou

t 

Cost of saving Cost of order Total cost (IDR) 

Stockout 

percentag

e 

Gaso

line 

RON 

92 

Norma

l 

Min-

Max 
34 8 

IDR 

31.124.590.838,49 

IDR             

183.292.636.878,54 

IDR            

214.417.227.717,03 
0,94% 

(s,Q) 28 23 
IDR 

6.854.007.426,59 

IDR         

150.946.877.429,39 

IDR            

157.800.884.855,97 
2,70% 

(s,S) 34 22 
IDR 

6.157.925.035,10 

IDR            

183.292.636.878,54 

IDR            

189.450.561.913,64 
2,59% 

High 

Deman

d 

(+20%

) 

Min-

Max 
34 33 

IDR 

7.591.227.198,03 

IDR            

183.292.636.878,54 

IDR             

190.883.864.076,57 
3,88% 

(s,Q) 31 107 
IDR             

5.446.628.420,78 

IDR              

167.119.757.153,96 

IDR             

172.566.385.574,74 
12,57% 

(s,S) 37 70 
IDR              

5.306.241.968,34 

IDR             

199.465.516.603,12 

IDR             

204.771.758.571,45 
8,23% 
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The results of the comparative simulation showed significant performance differences 

between the inventory control methods (Min-Max, (s,Q), and (s,S)) in the face of three demand 

conditions: normal, increasing by 20%, and decreasing by 15%. This simulation was conducted 

for two main products, namely Gasoline RON 92 and Gasoil 0.05% S, and ran for 851 days for 

each combination of methods and demand scenarios. The long duration of the simulation aims 

to ensure that order patterns, response to demand, and the effects of lead time and demand 

variations can be analyzed comprehensively and reflect more realistic operational conditions. 

In normal demand scenarios, the Min-Max method performs best in terms of maintaining 

stock availability, with the lowest stockout percentage (0.94% for Gasoline RON 92 and 7.02% 

for 0.05% S Gasoil). However, such performance has to be paid for with very high storage 

costs, resulting in the largest total cost among other methods. In contrast, the (s,S) method 

offers the lowest total cost, but sacrifices service levels with a very high number of stockout 

days (22 days for Gasoline RON 92 and 326 days for 0.05% S Gasoil). Method (s,Q) indicates 

a middle position—moderate operating costs and a tolerable stockout—making it the most 

balanced method for normal conditions. 

In high demand scenarios (+20%), all methods experience increased pressure on stocks. 

For Gasoline RON 92, the Min-Max and (s,Q) methods were able to maintain a fairly good 

level of service, while (s,S) showed efficient performance in terms of cost but with a higher 

number of stockout days (70 days). At 0.05% S Gasoil, the (s,Q) method still provides the best 

performance in cost efficiency, despite recording 300 days of stockout. In contrast, (s,S) 

experienced a significant spike in the number of stockout days up to 324 days, indicating a high 

risk to product availability under extreme demand conditions. 

Meanwhile, in the low demand scenario (−15%), the Min-Max method excels in terms 

of service by not experiencing stockouts at all, but storage costs become very high due to the 

Prod

uct 

Scenar

io 
Method 

Sent 

order 

Days of 

Stockou

t 

Cost of saving Cost of order Total cost (IDR) 

Stockout 

percentag

e 

Low 

Deman

d (-

15%) 

Min-

Max 
34 37 

IDR             

7.098.766.289,90 

IDR              

183.292.636.878,54 

IDR              

190.391.403.168,44 
4,35% 

(s,Q) 25 6 
IDR            

8.373.761.596,70 

IDR           

134.773.997.704,81 

IDR              

143.147.759.301,51 
0,71% 

(s,S) 36 13 
IDR              

6.950.791.142,75 

IDR              

194.074.556.694,93 

IDR           

201.025.347.837,67 
1,53% 

Gaso

il 

0,05

% S 

Norma

l 

Min-

Max 
34 115 

IDR             

5.399.809.783,46 

IDR          

183.292.636.878,54 

IDR         

188.692.446.662,00 
13,51% 

(s,Q) 33 171 
IDR              

3.974.196.511,04 

IDR      

177.901.676.970,35 

IDR              

181.875.873.481,39 
20,09% 

(s,S) 32 216 
IDR              

3.395.500.776,41 

IDR             

172.510.717.062,16 

IDR            

175.906.217.838,57 
25,38% 

High 

Deman

d 

(+20%

) 

Min-

Max 
34 163 

IDR            

4.586.874.081,83 

IDR              

183.292.636.878,54 

IDR              

187.879.510.960,37 
19,15% 

(s,Q) 33 300 
IDR              

3.010.929.740,34 

IDR           

177.901.676.970,35 

IDR              

180.912.606.710,69 
35,25% 

(s,S) 34 211 
IDR            

4.069.492.295,99 

IDR           

183.292.636.878,54 

IDR             

187.362.129.174,53 
24,79% 

Low 

Deman

d (-

15%) 

Min-

Max 
34 82 

IDR              

6.085.239.739,23 

IDR            

183.292.636.878,54 

IDR         

189.377.876.617,77 
9,64% 

(s,Q) 31 141 
IDR              

4.436.181.958,96 

IDR          

167.119.757.153,96 

IDR            

171.555.939.112,92 
16,57% 

(s,S) 34 48 
IDR              

5.801.762.203,39 

IDR              

183.292.636.878,54 

IDR              

189.094.399.081,93 
5,64% 
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high average daily stock. On the other hand, the method (s,Q) is the most cost-efficient option, 

with a very low stockout rate (only 6 days for Gasoil 0.05% S and 0.71% for Gasoline RON 

92). The (s,S) method still shows low operating costs, but has a higher number of stockout days 

than (s,Q), which is 48 days for both products. 

Overall, the results of the simulation over 851 days prove that there is no single method 

that is absolutely superior. Choosing the most appropriate method depends largely on the 

organization's priorities: whether it prioritizes product availability and customer satisfaction or 

logistics cost efficiency. For situations that demand high availability, Min-Max is an ideal 

choice despite its high cost. However, if cost efficiency is the main goal, especially in 

conditions of declining demand, then the (s,Q) method is more recommended. The method 

(s,S) is only suitable for use if the company is able to manage stockout risk with a backup 

strategy or distribution flexibility, considering that its performance is highly dependent on 

accurate reorder point and lead time parameters. 

 

Managerial Implications 

The results of the simulation that have been carried out provide various important 

implications for PT XYZ's management, especially in designing a fuel inventory control 

strategy that is adaptive to demand dynamics. One of the key findings is that there is no one 

method of inventory control that is completely superior in all scenarios. Therefore, logistics 

managers need to consider the trade-off between the cost of inventory and the service level in 

every operational decision. 

The Min-Max method has proven to be the most stable in maintaining stock availability, 

with very low stockout rates even in high demand conditions. This suggests that this approach 

is suitable for use in environments that require consistent product availability and minimal risk 

of shortages, although storage costs tend to be higher. These findings are in line with the views 

of Chopra and Meindl (2019), who emphasize the importance of balancing inventory costs with 

customer service levels in supply chain strategies. 

Meanwhile, the (s,Q) and (s,S) methods show efficiency in terms of cost, but with the 

consequence of increased stockout risk, especially in an increasing demand scenario. The high 

number of stockout days can interfere with the reliability of distribution services, which 

according to Zinn and Liu (2001) can negatively impact customer satisfaction and loyalty in 

the long run. Therefore, the use of efficiency-based methods such as (s,Q) or (s,S) should be 

done with dynamic parameter adjustments, especially in periods of fluctuation or when supply 

uncertainty occurs. 

Furthermore, Rosič et al. (2020) assert that the performance of inventory systems is 

highly dependent on the match between demand methods and scenarios. Adjustments to stock 

control strategies based on historical, seasonal, and short-term demand patterns will be a 

determining factor for logistics effectiveness in the energy sector. In this context, the use of 

historical data for data-driven simulation and planning is also highly recommended. Waller and 

Fawcett (2013) stated that the integration of predictive analytics and modern logistics 

information systems can improve the accuracy of managerial decisions and operational 

resilience in the fuel supply chain. Overall, fuel inventory management at PT XYZ should be 

geared towards a responsive and data-driven approach, considering the balance between cost 

efficiency and service reliability. Simulations such as those conducted in this study can be a 
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strong basis in strategic decision-making to ensure smooth distribution, avoid potential losses 

due to stock shortages, and optimize the use of the company's logistics resources. 

 

CONCLUSION 

The simulation analysis of PT XYZ’s 851-day fuel supply chain for Gasoline RON 92 

and Gasoil 0.05% S reveals that the current system struggles to address demand uncertainty 

and supply chain dynamics, particularly due to untimely ship arrivals, supply-consumption 

mismatches, and demurrage costs from cargo buildup during ullage shortages. The (s,Q) 

method emerged as the most optimal inventory policy, balancing cost efficiency and stock 

availability across normal and low-demand scenarios, while the Min-Max method, despite 

higher costs, proved reliable for critical high-demand contexts by ensuring service levels. 

Future research should prioritize integrating real-time data and advanced forecasting models 

(e.g., machine learning) to enhance demand prediction accuracy, alongside automated 

inventory tracking systems to reduce demurrage risks and improve operational agility in 

volatile markets. 
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